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Academia Research on MCS

 To meet the real-time requirement, acquiring the Worst-Case Execution

Time (WCET) of each task is the first step.
 However, it is unlikely to achieve the WCET of a tasks via measurement.
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Academia Research on MCS
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* In MCS, WECT is normally estimated with different levels of confidence*:
* Low confidence: optimistic, saving system resource, but risky.
. , pessimistic, safe, but wasting system resource.

* How to allocate the shared resources effectively and keep the system
safe if the key question in Academia MCS research.

*More levels of confidence can be considered.



Academia Research on MCS

* In the earliest MCS model (i.e., SMC-no), all the tasks used the high
confident estimation of WCET.
* The system is safe
e Utilization of the resources is low
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Academia Research on MCS

* Adaptive resource management (i.e. AMC) is an effective approach to
address the issue, introducing different system mode:
e System first executes at the low-criticality mode (low confident WCET is used)

e System goes to the high-criticality mode (high confident WCET is used), while
meeting a predefined condition (e.g., over-run of a task)

* In the high-criticality mode, low-criticality tasks are terminated.
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Academia Research on MCS

e Adaptive resource management (i.e. AMC) is an effective approach to
address the issue, introducing different system mode:
e System first executes at the low-criticality mode (low confident WCET is used)

e System goes to the high-criticality mode (high confident WCET is used), while
meeting a predefined condition (e.g., over-run of a task)

* In the high-criticality mode, low-criticality tasks are terminated.
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Mixed-Criticality System in Automotive

 MCS is attractive to Automotive industry

* With the diverse functionalities required by modern safety-critical systems and the
rapid evolution of executed platforms.
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Mismatches between
Academia Research and Automotive Industry Practice



ASIL In I1SO 26262

* Automotive Safety Integrity Level (ASIL): the degree of rigor that
should be applied in development, implementation, and verification
of a requirement in order to avoid unreasonable risk in the product

* ASIL-A, ASIL-B, ASIL-C, ASIL-D
* ASIL-A is the least stringent level
e ASIL-D the most stringent one

e ASIL assigned via safety analysis, considering
* Severity: the degree of harm, S1 (no harm) to S3
* Exposure: probability of occurrence, E1 (very low probability) to E4
* Controllability: controllability of hazard of the failure C1 (controllable) to C3



ASIL In I1SO 26262

Definition of ASIL

Severity  Exposure Controllability
Cl1 C2 C3
El QM QM OQM
S1 E2 QM OQM OM
E3 OM QM A
E4 QM A B
El QM OM OM
2 E2 QM QM A
E3 QM A B
E4 A B C
El QM QM A
3 E2 QM A B
E3 A B C
E4 B C D

QM stands for Quality Management, where the assigned requirement
can be developed using ordinary QM approaches.



ASIL In I1SO 26262

* ASIL Decomposition:

* a safety requirement can be decomposed into two subsequent safety
requirements, where their ASILs can be tailored

* An ASIL-D requirement can be decomposed as:
* one ASIL-C + one ASIL-A; one ASIL-B + One ASIL-B; one ASIL-D + one QM

* An ASIL-C requirement can be decomposed as :
* one ASIL-B + one ASIL-A; one ASIL-C + one QM

* An ASIL-B requirement can be decomposed as:
* one ASIL-A + one ASIL-A; one ASIL-B + one QM;

* An ASIL-A requirement can be decomposed as:
* one ASIL-A + one QM;



Mismatch

e Suppose we directly use ASIL as the criticality level in AMC
* Mode switch to high-criticality level: suspend the low-criticality tasks

* Example: when system switches into criticality level ASIL-C

e ASIL-C and ASIL-D tasks execute Severity  Exposure Controllability
Cl C2 C3
* ASIL-A and ASIL-B tasks suspended Fi QM QM QM
S1 E2 QM QM QM

E3 QM QM A

, E4 QM A B
e Consider a ASIL-B task F QM QM QM
o . E2 QM QM A

e Suspend it will increase it exposure from E3 to E4 S2 £3 oM A B

 Because its function will always fail (suspended) Ed A B e

_ . e . El QM QM A

* Suspension effectively makes “it into ASIL-C S3 E2 QM A B

. E3 A B C

* We should not suspend it E4 B C D

ASILs are statically allocated and cannot be raised at run-time, even though the suspension effectively raises its safety requirement



Mismatch

* Another problem is caused by ASIL Decomposition

* For example
» Safety requirement R1 of ASIL-D decomposed into R1:1 (ASIL-C) and R2:2 (ASIL-A)

 task #i (with criticality level C) and task #j (with criticality level = A) are tasks
fulfilling these two safety requirements.

e When the AMC model switches from Mode

* A(L=A)to Mode B (L = B), task #j is suspended, which poses threats to
fulfilment of R1



Mismatch

* If a high-criticality tasks is dependent on a low-criticality task, killing low-
criticality tasks will cause the corruption of the high-criticality task

ASILB
=>ElementE.1

ASIL C
=>ElementE.2

ASILD
=>Element E
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Isolation

* |solation between different criticality tasks is regulated by all the safety-
related standards.

* This is always the essential requirements.

* |1SO26262: “If freedom from interference between elements
implementing safety requirements cannot be argued in the preliminary
architecture then the architectural elements shall be developed in
accordance with the highest ASIL for those safety requirements”

* Isolation includes: Timing isolation, space isolation, and fault isolation.



Solution: Run-time Safety Analysis
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Solution: Three System Architectures

* Software Virtualized System * ARM TrustZone System
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Summary

 MICS is a key direction in safety-critical systems, it is well studied in
academia, but still has gaps in industry.

* We propose run-time safety analysis and three system architectures
to solve the gaps.

* The main intention of this paper is to encourage tighter connections
between academia and industry.



