
Bridging the Pragmatic Gaps for Mixed-Criticality 
Systems in the Automotive Industry

Zhe Jiang, Shuai Zhao, Ran Wei, Dawei Yang, Richard Paterson, Nan Guan, Yan Zhuang, Neil Audsley

ARM Ltd, UK
University of York

Dalian University of Technology
City University of Hong Kong

1

Published at IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(4): 1116-1129 (2022)



Academia Research on MCS
• To meet the real-time requirement, acquiring the Worst-Case Execution 

Time (WCET) of each task is the first step.
• However, it is unlikely to achieve the WCET of a tasks via measurement.

WCET



Academia Research on MCS

• In MCS, WECT is normally estimated with different levels of confidence*:

• Low confidence: optimistic, saving system resource, but risky.

• High confidence:, pessimistic, safe, but wasting system resource.

• How to allocate the shared resources effectively and keep the system 
safe if the key question in Academia MCS research.

*More levels of confidence can be considered.

0

D
is

tr
ib

u
ti

o
n

 o
f 

ti
m

es

Time

Maximum 
Observed 
Execution 

Time

WCET

Worst-case Performance

Low Confidence

High Confidence



Academia Research on MCS
• In the earliest MCS model (i.e., SMC-no), all the tasks used the high 

confident estimation of WCET.
• The system is safe

• Utilization of the resources is low

Safety-Critical MCU/SoC
Hardware
Software

Operating System

Application

l = Low

Application

l = High

High Confidence

Drivers



Academia Research on MCS
• Adaptive resource management (i.e. AMC) is an effective approach to 

address the issue, introducing different system mode:
• System first executes at the low-criticality mode (low confident WCET is used)

• System goes to the high-criticality mode (high confident WCET is used), while 
meeting a predefined condition (e.g., over-run of a task)

• In the high-criticality mode, low-criticality tasks are terminated.

Safety-Critical MCU/SoC
Hardware
Software

Operating System

Application

l = Low

Application

l = High

Low Confidence: Low-criticality Mode

Safety-Critical MCU/SoC
Hardware
Software

Operating System

Application

l = High

High Confidence: High-criticality Mode

Drivers Drivers



Academia Research on MCS
• Adaptive resource management (i.e. AMC) is an effective approach to 

address the issue, introducing different system mode:
• System first executes at the low-criticality mode (low confident WCET is used)

• System goes to the high-criticality mode (high confident WCET is used), while 
meeting a predefined condition (e.g., over-run of a task)

• In the high-criticality mode, low-criticality tasks are terminated.

Safety-Critical MCU/SoC
Hardware
Software

Operating System

Application

l = Low

Application

l = High

Low Confidence: Low-criticality Mode

Safety-Critical MCU/SoC
Hardware
Software

Operating System

Application

l = High

High Confidence: High-criticality Mode

System Monitor System Monitor



Mixed-Criticality System in Automotive
• MCS is attractive to Automotive industry

• With the diverse functionalities required by modern safety-critical systems and the 
rapid evolution of executed platforms.



Mismatches between 

Academia Research and Automotive Industry Practice

8



ASIL in ISO 26262

• Automotive Safety Integrity Level (ASIL): the degree of rigor that 
should be applied in development, implementation, and verification 
of a requirement in order to avoid unreasonable risk in the product

• ASIL-A, ASIL-B, ASIL-C, ASIL-D
• ASIL-A is the least stringent level

• ASIL-D the most stringent one

• ASIL assigned via safety analysis, considering
• Severity: the degree of harm, S1 (no harm) to S3

• Exposure: probability of occurrence, E1 (very low probability) to E4

• Controllability: controllability of hazard of the failure C1 (controllable) to C3

9



ASIL in ISO 26262

10

Definition of ASIL

QM stands for Quality Management, where the assigned requirement
can be developed using ordinary QM approaches.



ASIL in ISO 26262

• ASIL Decomposition:
• a safety requirement can be decomposed into two subsequent safety 

requirements, where their ASILs can be tailored

• An ASIL-D requirement can be decomposed as:
• one ASIL-C + one ASIL-A; one ASIL-B + One ASIL-B; one ASIL-D + one QM

• An ASIL-C requirement can be decomposed as : 
• one ASIL-B + one ASIL-A; one ASIL-C + one QM

• An ASIL-B requirement can be decomposed as: 
• one ASIL-A + one ASIL-A; one ASIL-B + one QM;

• An ASIL-A requirement can be decomposed as: 
• one ASIL-A + one QM;

11



Mismatch

• Suppose we directly use ASIL as the criticality level in AMC
• Mode switch to high-criticality level: suspend the low-criticality tasks

• Example: when system switches into criticality level ASIL-C
• ASIL-C and ASIL-D tasks execute

• ASIL-A and ASIL-B tasks suspended

• Consider a ASIL-B task
• Suspend it will increase it exposure from E3 to E4

• Because its function will always fail (suspended)

• Suspension effectively makes “it into ASIL-C”

• We should not suspend it

12ASILs are statically allocated and cannot be raised at run-time, even though the suspension effectively raises its safety requirement



Mismatch

• Another problem is caused by ASIL Decomposition

• For example
• Safety requirement R1 of ASIL-D decomposed into R1:1 (ASIL-C) and R2:2 (ASIL-A)

• task #i (with criticality level C) and task #j (with criticality level = A) are tasks 
fulfilling these two safety requirements.

• When the AMC model switches from Mode

• A (L = A) to Mode B (L = B), task #j is suspended, which poses threats to 
fulfilment of R1

13



Mismatch

• If a high-criticality tasks is dependent on a low-criticality task, killing low-
criticality tasks will cause the corruption of the high-criticality task

14

ASIL D
=> Element E

ASIL B
=> Element E.1

ASIL C
=> Element E.2



Isolation

• Isolation between different criticality tasks is regulated by all the safety-
related standards. 

• This is always the essential requirements.

• ISO26262: “If freedom from interference between elements 
implementing safety requirements cannot be argued in the preliminary 
architecture then the architectural elements shall be developed in 
accordance with the highest ASIL for those safety requirements”

• Isolation includes: Timing isolation, space isolation, and fault isolation.

15



Solution: Run-time Safety Analysis

16

Task Set in System 
Mode k

Inputs

Failure Mode Effect 
Analysis

Step 1

Important Task Set

Dependency 
Analysis

Dependent Tasks by 
Important Task Set

Task Set in System 
Mode k+1

Step 2 Output



Solution: Three System Architectures 

17

• Software Virtualized System • ARM TrustZone System

• Hardware Virtualized System



Summary

• MCS is a key direction in safety-critical systems, it is well studied in 
academia, but still has gaps in industry.

• We propose run-time safety analysis and three system architectures 
to solve the gaps.

• The main intention of this paper is to encourage tighter connections 
between academia and industry.

18


