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Safety Criticality Levels

» Criticality level: the required safety assurance level of system components.
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Mixed-Criticality System (MCS)

» Different critical modules are now implemented using different chips.

@ Suspension/Dumping @ Body Control @ Data Fusion

[ Level B ] [ Level B, up to Level D ]

@ Electric Power Steering

® SRR,MRR,LRR

® Adaptive Cruise Control

@ Battery Management(12V,48V,HV)

@ Transmission Control

Level D
@ DC-DC Converter © Motor (Alterno Starter,eAxel drive...)

® Engine Management Unit

Level D




Mixed-Criticality System (MCS)

» Mixed-Criticality System: designing different critical components onto a shared
hardware platform.

Key Benefits Final goal

® Overhead optimization ¢ All systems on one chip!

( Size ) (Weight) ( Power )
( Cost ) ( )

e S

e System diversity & possibility



General System Architecture of MCS

» Mixed-Criticality System: designing different critical components onto a shared
hardware platform.

» Lo-Task: Low-criticality task
» Hi-Task: High-criticality task

Lo-Task Lo-Task Hi-Task “e Hi-Task

Application Level

OS Level
OS Kernel
Software
Hardware
I/Os Memory Processor Processor Processor

A conventional MCS architecture



General System Architecture of MCS

» Key problem
> Resource contentions
> Interferences

» In coping with these issues, the classic two-mode MCS was presented

» S Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance
[RTSS 2009]
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Mode Switch in MCS

» Dual-mode MCS introduces two system modes:
» Lo-mode: all tasks are executed
» Hi-mode: only Hi-tasks are executed and Lo-tasks are terminated

Lo-Task Lo-Task Hi-Task e Hi-Task Hi-Task Hi-Task Hi-Task S Hi-Task
Application Level Application Level
R e, OSlevel ~~~~~~ T T T T
OS Kernel OS Kernel
Software Software
Hardware Hardware
I/Os Memory Processor Processor Processor I/Os Memory Processor Processor Processor

System in Lo-Mode System in Hi-Mode




Mode Switch in MCS

» To achieve this, a system monitor is required
» In OS kernel, or
» As an independent hypervisor

» Many practical system frameworks were built upon this model
» West et al. A Virtualized Separation Kernel for Mixed-Criticality Systems [TOCS, 2016]

» Kim et al. Supporting 1/0 and IPC via fine-grained OS isolation for mixed-criticality tasks [RTNS 2018]
» Gadepalli et al. Chaos: a System for Criticality-Aware, Multi-core Coordination [RTAS, 2019]

Lo-Task Lo-Task Hi-Task <. Hi-Task Lo-Task Lo-Task Hi-Task S Hi-Task
Application Level Application Level
[OSLevel oo oo TT T TTT T OS Level
ib. Lib.Mode . .
OS Kernel Lib Mode_ Execution Monitor OS Kernel ) - Execution Monitor
Switch Switch
d _ -
Software Software
Hardware Intr. Hardware + Intr.
I/Os Memory Processor Timer: Hi-Mode I/Os Memory Processor Timer: Hi-Mode

Lo-Mode Hi-Mode
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Potential Safety Hazards in MCS and Imprecise MCS

» As reported, deploying safety mode switches may cause safety risks

» A. Burns and S.Baruah. Towards a more practical model for mixed criticality systems [WMC, 2013]
» S.Baruah et al. Scheduling mixed-criticality systems to guarantee some service under all non-erroneous behaviors
[ECRTS 2016]



Potential Safety Hazards in MCS and Imprecise MCS

» As reported, deploying safety mode switches may cause safety hazards

» A. Burns and S.Baruah. Towards a more practical model for mixed criticality systems [WMC, 2013]
» S.Baruah et al. Scheduling mixed-criticality systems to guarantee some service under all non-erroneous behaviors
[ECRTS 2016]

» Approximation is an effective mitigation of this problem (i.e., Imprecise MCS, IMCS):
» Executing Lo-tasks with decreased computing precision and less time budget
» Existing theoretical models for IMCS

» L. Huang. Graceful degradation of low-criticality tasks in multiprocessor dual-criticality systems [RTNS 2018]
» D.Liu. Scheduling analysis of imprecise mixed-criticality real-time tasks [TC 2018]

» R.M.Pathan. Improving the quality-of-service for scheduling MCSs on multiprocessor [ECRTS 2017]

» X.Gu. Dynamic budget management and budget reclamation for mixed-criticality systems [RTS 2019]

» However, a systematic system framework of IMCS is still missing...



Research Challenges of Building a practical IMCS

» Research Challenges (RC.x) whiling building a practical IMCS
» RC.1. an effective method to achieve approximation of the Lo-tasks
» RC.2. a timely method to configure the approximation degree at run-time
» RC.3. a quantitative analysis to determine the appropriate approximation degree
for each lo-task
» RC.4. a systematic solution to realise the new features introduced by IMCS
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RC.1. Achieving approximation

» The working procedures of a processor:
» Instruction Fetch (IF)
» Instruction Decode (ID)
» Execution (EX)
» Memory Access (MA)
» Write-Back (WB)
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Top-level micro-architecture of a 5-stage pipelined RISC-V processor
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RC.1. Achieving approximation

» To verify our assumption,
» Randomly generated and executed 1,000 instructions
» Executed the generated instructions and record the execution time
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RC.1. Achieving approximation

» To verify our assumption,
» Randomly generated and executed 1,000 instructions
» Executed the generated instructions and record the execution time
» The floating point (FP) computation dominates an instruction’s execution time
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RC.1. Achieving approximation

» FP computation is returned in a single clock cycle when it meets a trivial case (TC)
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» Eg.,0xY=0
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IF:CH

M

EX:CT INT FP  TC-hit MA
Experimental Results

WB

TIndex # OPR OPI OP2 RD
1 ADD (+) 0 X X
2 ADD (+) X 0 X
3 ADD (+) X D' 0
4 SUB () X 0 X
5 SUB (-) 0 X X
6 SUB (-) X X 0
7 MULT (x) X 0 0
8 MULT (x) 0 X 0
9 MULT (x) X  +1 =+X
10 MULT (x) 41 X =+X
11 DIV (=) 0 X 0
12 DIV (=) X 41  +X

Travail Case (TC)




RC.1. Achieving approximation

» FP computation is returned in a single clock cycle when it meets a trivial case (TC)

» Eg.,0xY=0

» Achieving approximation at the FPU

» While designing the new processor, RC.2 is recalled:
» Supporting run-time configurations of the approximation degree
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» Cutting down the valid bit-width of input operands, e.g.,

1.071 x 1.001 (TC-miss) ~ 1.07 x 1.00 (TC-hit) = 1.07
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HIART-FPU

» The top-level design of the proposed FPU contains three modules:
» Cached-FPU (C-FPU) — executes FP calculations if TC-miss
» Trivial Computation Unit (TCU) — executes FP calculation if TC-hit
» Approximation Unit (APU) — controls the approximation degree of input data
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HIART-FPU

» The top-level design of the proposed FPU contains three modules
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HIART-FPU

» The top-level design of the proposed FPU contains three modules

» Cached-FPU (C-FPU) — executes FP calculations if TC-miss
» Trivial Computation Unit (TCU) — executes FP calculation if TC-hit
» Approximation Unit (APU) — controls the approximation degree of input data
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HIART-FPU

» The top-level design of the proposed FPU contains three modules
» Cached-FPU (C-FPU) — executes FP calculations if TC-miss

» Trivial Computation Unit (TCU) — executes FP calculation if TC-hit
» Approximation Unit (APU) — controls the approximation degree of input data
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Research Challenges of Building a practical IMCS

» Research Challenges (RC.x) whiling building a practical IMCS
» RC.1. an effective method to achieve approximation of the Lo-tasks
» RC.2. a timely method is needed to configure the approximation degree at run-
time
» RC.3. a quantitative analysis to determine the appropriate approximation degree
for each Lo-task
» RC.4. a systematic solution to realise the new features introduced by IMCS



Measurement-based method

» A measurement-based method is aiming to find Lo-task (z;)
» Approximation degree (M;) of the Lo-task

» WCET with approximation (CiAP)
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Measurement-based method

» A measurement-based method is aiming to find Lo-task (z;)
» Approximation degree (M;) of the Lo-task
» WCET with approximation (CiAP)
» The measurement-based method contains three steps:
» Step 1: Initialisation and input generation
» Step 2: Experimental measures
» Step 3: Results analysis
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Measurement-based method

» A measurement-based method is aiming to find Lo-task (z;)
» Approximation degree (M;) of the Lo-task
» WCET with approximation (CiAP)
» The measurement-based method contains three steps:
» Step 1: Initialisation and input generation
» Step 2: Experimental measures
» Step 3: Results analysis
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Research Challenges of Building a practical IMCS

» Research Challenges (RC.x) whiling building a practical IMCS
» RC.1. an effective method to achieve approximation of the Lo-tasks
» RC.2. a timely method is needed to configure the approximation degree at run-
time
» RC.3. a quantitative analysis to determine the appropriate approximation degree
for each lo-task
» RC.4. a systematic solution to realize the new features introduced by IMCS



HIART-MCS: System Architecture

» Conventional MCS architecture
» Two system modes
» Lo-Mode: Lo-tasks + Hi-tasks
» Hi-Mode: Hi-tasks
» Software tasks are managed by an OS
» Executions are monitored by a monitor

Lo-Task Lo-Task Hi-Task <. Hi-Task
Application Level
OS Level
OS Kernel L|b.Mode_ Execution Monitor
Switch
Software
Hardware Intr.
I/Os Memory Processor Timer: HFMode

System Architecture of Conventional MCS
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» Conventional MCS architecture
» Two system modes
» Lo-Mode: Lo-tasks + Hi-tasks
» Hi-Mode: Hi-tasks
» Software tasks are managed by an OS
» Executions are monitored by a monitor
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Hardware Intr.
I/Os Memory Processor Timer: HFMode

System Architecture of Conventional MCS

>

HIHART MCS architecture

» Three system modes
» Lo-Mode: Lo-tasks + Hi-tasks
» Mid-Mode: Lo-tasks (AP) + Hi-tasks
» Hi-Mode: Hi-tasks

» Software: modifying the execution monitor

» Hardware: deploying HIART-processor

» Source Compatibility

Lo-Task Lo-Task Hi-Task Hi-Task
Application Level
[oSLevel T
Lib.Mode
OS Kernel I . - Execution Monitor
Switch |
- -
Software
Hardware + M Intr. Intr.
HIART - TimerMID TimerHI-
I/Os Memor
/ ¥ Processor -Mode Mode

System Architecture of HIART-MCS
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Theoretical Model and Optimisation

» To support the newly introduced Mid-Mode, we need
» (a) To have a corresponding timing analysis;
» (b) A way to work out the best switching instances.
» For (a), we follow the analysis AMC-rtb, and adapted a response time analysis for
our triple-mode system:
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Eq 2. Response time of Hi-tasks

Eq 1. Response time of Hi-tasks from Mid- to Hi- mode (Lo-tasks
from Lo- to Mid- mode are terminated)
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Theoretical Model and Optimisation

» To support the newly introduced Mid-Mode, we need
» (a) To have a corresponding timing analysis;
» (b) A way to work out the best switching instances.
» For (b), we proposed two strategies to find the optimal switching time:
» 1. Solving by priority ordering: choose the Lo-task that has the highest priority

first, then scale its Cl-MI until the system is not schedulable.
CM' = argmax(R; < D;,Vj €T)
C

(2

» 2. Solving by global scaling: in this case, the Cl-MI of the Lo-tasks will be scaled
globally by a factor y. The searching is done using binary search with a time
complexity of O(log(n)).

vi e T oM = L0 4 [y (O™ — 1)
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Experimental Platform

» Platform: Xilinx VC709 Evaluation Board
» Processors: 16 HIART-processor
> RSIC-V ISA
» 5-stage pipeline
» 4KB instruction and data cache
» Interconnect: 5 x 5 BlueShell Network-on-Chip
» Operating system: FreeRTOS v.10.4

» Examined systems
» Legacy: a system without MCS feature
» BS|OSK: an MCS running execution monitor inside OS kernel
» BS|HYP : an MCS running execution monitor interpedently
» HIART-MCS



Theoretical Evaluation

» Experiment Setup:
» Tasks are randomly generated, with utilization ranging from 0.5-0.95 (0.1-0.9 for

the schedulability experiment); v is set to be 0.1-0.9 (and in the schedulability
analysis, it was searched using the proposed method).
» Each trial (a single data point in the plots) consist 1,000 runs.
» Observation: The proposed MCS model outperforms the traditional dual-mode
model (i.e. without the Mid-mode) in terms of su1rvivability and schedulability.
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Software Overhead

» Experimental Setup
» Operating Systems: native FreeRTOS kernel with essential I/O drivers

» Tool: RISC-V GNU tool-chain
» Metrics: memory footprint (unit: KB)

» Observation: HIART-MCS requires less memory footprint than BS|HYP. Its software
overhead is similar to BS-OSK.
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Hardware Overhead

» Experimental Setup
» HIART-Processor: support run-time approximation of 100 tasks
» Conventional RSIC-V processor
» Other system elements: AXlI-Interconnect, SPI controller, and Ethernet controller
» Tool: Xilinx Vivado (v2020.2)
» Metrics: LUTs, registers, DSP, RAM, and Power.

» Observation: The design of the HIART-processor is resource-efficient compared to a
generic processor. The introduced overhead is less than the basic system elements.

LUTS Registers DSP RAM(KB) Power(mW)
AXI-IC 543 724 0 0 11
SPI 695 512 0 0 7
Ethernet 1428 895 0 0 13
RISC-V Processor 4,993 5,322 17 256 377
HIART-Processor 5,329 5,743 17 256 389
Proposed 216 387 0 0 5

Hardware Overhead



Case Study

» Task sets
> 18 Hi-tasks

» Renesas functional safety automotive use cases
» 18 Lo-tasks
» EEMBC benchmark
» DNN tasks based on LeNet-5 and SqueezeNet
» Image processing tasks: Sobel, Canny, Scharr, Prewitt, Roberts, Sharpen filters

» Experimental setup
» Activating 4/8/16 processors
» Tunning system target utilisation from 45% to 100%

» Metrics
» Hi-tasks: success ratio
» Lo-Tasks: number of services (NoS)
» Hi-Tasks and Lo-Tasks: average Quality of Computation (QoC)



Case Study: Results

» Observations
» For Hl-tasks, HIART-MCS ensures similar success ratios compared to conventional
MCS frameworks
» For LO-tasks, HIART-MCS significantly increases throughput and decreases
experimental variances compared to conventional MCS frameworks
» HIART-MCS slightly decreases overall computation quality
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(a) HI-tasks: success ratio (x-axis: utilisation). (b) Lo-tasks: average NoS. (c) System level: average QoC.
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Conclusion

» In safety-critical systems, Mixed-Criticality System (MCS) is a vital direction.

» Mode switch is a useful strategy in MCS but could cause safety risks.

» To mitigate these risks, we present a systematic framework, named HIART-MCS
» A processor supporting hardware-level approximation
» A measurement-based method to configure the processor
» A new system architecture
» Theoretical analysis and optimization

» Results
» Effectively improving LO-task survivability with negligible impact on HI-tasks
» Resource-efficient
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