A High-Resilience Imprecise Computing
Architecture for Mixed-Criticality Systems

Zhe Jiang2l) Xiaotian Dail*!, Alan Burns!l, Neil Audsley!3!
ZongHua Gu!, lan Gray™

tUniversity of York, United Kingdom

2University of Cambridge, United Kingdom

3City, University of London, United Kingdom

4“Umea University, Sweden

Outline

Mixed-Criticality System (MCS)

Motivation and Research Challenges: Imprecise MCS
HIART-MCS: Method, Architecture, and Design
Theoretical Model and Optimisation

Evaluation

Conclusion

VVVYYVYY

Outline

Mixed-Criticality System (MCS)

Motivation and Research Challenges: Imprecise MCS
HIART-MCS: Method, Architecture, and Design
Theoretical Model and Optimisation

Evaluation

Conclusion

VVVYYVYY

Safety Criticality Levels

» Criticality level: the required safety assurance level of system components.

Safety Criticality Levels

» Criticality level: the required safety assurance level of system components.

Body Control System Engine Control System

Criticality Level:

Criticality Level:

o

Low

Mixed-Criticality System (MCS)

» Different critical modules are now implemented using different chips.

@ Suspension/Dumping @ Body Control @ Data Fusion

[Level B] [Level B, up to Level D]

@ Electric Power Steering

® SRR,MRR,LRR

® Adaptive Cruise Control

@ Battery Management(12V,48V,HV)

@ Transmission Control

Level D
@ DC-DC Converter © Motor (Alterno Starter,eAxel drive...)

® Engine Management Unit

Level D

Mixed-Criticality System (MCS)

» Mixed-Criticality System: designing different critical components onto a shared
hardware platform.

Key Benefits Final goal

® Overhead optimization ¢ All systems on one chip!

(Size) (Weight) (Power)
(Cost) ()

e S

e System diversity & possibility

General System Architecture of MCS

» Mixed-Criticality System: designing different critical components onto a shared
hardware platform.

» Lo-Task: Low-criticality task
» Hi-Task: High-criticality task

Lo-Task Lo-Task Hi-Task “e Hi-Task

Application Level

OS Level
OS Kernel
Software
Hardware
I/Os Memory Processor Processor Processor

A conventional MCS architecture

General System Architecture of MCS

» Key problem
> Resource contentions
> Interferences

» In coping with these issues, the classic two-mode MCS was presented

» S Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance
[RTSS 2009]

Lo-Task Lo-Task Hi-Task “e Hi-Task

Application Level

OS Level
OS Kernel
Software
Hardware
I/Os Memory Processor Processor Processor

A conventional MCS architecture

Mode Switch in MCS

» Dual-mode MCS introduces two system modes:
» Lo-mode: all tasks are executed
» Hi-mode: only Hi-tasks are executed and Lo-tasks are terminated

Lo-Task Lo-Task Hi-Task e Hi-Task Hi-Task Hi-Task Hi-Task S Hi-Task
Application Level Application Level
R e, OSlevel ~~~~~~ T T T T
OS Kernel OS Kernel
Software Software
Hardware Hardware
I/Os Memory Processor Processor Processor I/Os Memory Processor Processor Processor

System in Lo-Mode System in Hi-Mode

Mode Switch in MCS

» To achieve this, a system monitor is required
» In OS kernel, or
» As an independent hypervisor

» Many practical system frameworks were built upon this model
» West et al. A Virtualized Separation Kernel for Mixed-Criticality Systems [TOCS, 2016]

» Kim et al. Supporting 1/0 and IPC via fine-grained OS isolation for mixed-criticality tasks [RTNS 2018]
» Gadepalli et al. Chaos: a System for Criticality-Aware, Multi-core Coordination [RTAS, 2019]

Lo-Task Lo-Task Hi-Task <. Hi-Task Lo-Task Lo-Task Hi-Task S Hi-Task
Application Level Application Level
[OSLevel oo oo TT T TTT T OS Level
ib. Lib.Mode . .
OS Kernel Lib Mode_ Execution Monitor OS Kernel) - Execution Monitor
Switch Switch
d _ -
Software Software
Hardware Intr. Hardware + Intr.
I/Os Memory Processor Timer: Hi-Mode I/Os Memory Processor Timer: Hi-Mode

Lo-Mode Hi-Mode

Outline

Mixed-Criticality System (MCS)

Motivation and Research Challenges: Imprecise MCS
HIART-MCS: Method, Architecture, and Design
Theoretical Model and Optimisation

Evaluation

Conclusion

VVVYYVYY

Potential Safety Hazards in MCS and Imprecise MCS

» As reported, deploying safety mode switches may cause safety risks

» A. Burns and S.Baruah. Towards a more practical model for mixed criticality systems [WMC, 2013]
» S.Baruah et al. Scheduling mixed-criticality systems to guarantee some service under all non-erroneous behaviors
[ECRTS 2016]

Potential Safety Hazards in MCS and Imprecise MCS

» As reported, deploying safety mode switches may cause safety hazards

» A. Burns and S.Baruah. Towards a more practical model for mixed criticality systems [WMC, 2013]
» S.Baruah et al. Scheduling mixed-criticality systems to guarantee some service under all non-erroneous behaviors
[ECRTS 2016]

» Approximation is an effective mitigation of this problem (i.e., Imprecise MCS, IMCS):
» Executing Lo-tasks with decreased computing precision and less time budget
» Existing theoretical models for IMCS

» L. Huang. Graceful degradation of low-criticality tasks in multiprocessor dual-criticality systems [RTNS 2018]
» D.Liu. Scheduling analysis of imprecise mixed-criticality real-time tasks [TC 2018]

» R.M.Pathan. Improving the quality-of-service for scheduling MCSs on multiprocessor [ECRTS 2017]

» X.Gu. Dynamic budget management and budget reclamation for mixed-criticality systems [RTS 2019]

» However, a systematic system framework of IMCS is still missing...

Research Challenges of Building a practical IMCS

» Research Challenges (RC.x) whiling building a practical IMCS
» RC.1. an effective method to achieve approximation of the Lo-tasks
» RC.2. a timely method to configure the approximation degree at run-time
» RC.3. a quantitative analysis to determine the appropriate approximation degree
for each lo-task
» RC.4. a systematic solution to realise the new features introduced by IMCS

Outline

Mixed-Criticality System (MCS)

Motivation and Research Challenges: Imprecise MCS
HIART-MCS: Method, Architecture, and Design
Theoretical Model and Optimisation

Evaluation

Conclusion

VVVYYVYY

RC.1. Achieving approximation

» The working procedures of a processor:
» Instruction Fetch (IF)
» Instruction Decode (ID)
» Execution (EX)
» Memory Access (MA)
» Write-Back (WB)

I ADDR#_ =_ ADDR+1#_ ;]J I
— OP1
CSR Rsi}H 1ALR,
OP2
<
Cache > — Decoder 2
o S
— — He{or1 i\ P
- g L _’; L %<>— op2 ALU RstH —>§ > > =
° <o > MEM 3
> D
GPR > ©
MEM P 3
=
— OP1
— or2 FPU RSL—
— OPR
Instruction Fetch (IF) Instruction Decode (ID) Execution (EX) Memory Access (MA)

Top-level micro-architecture of a 5-stage pipelined RISC-V processor

RC.1. Achieving approximation

» The working procedures of a processor:
» Instruction Fetch (IF)
» Instruction Decode (ID)
» Execution (EX)
» Memory Access (MA)
» Write-Back (WB)

I ADDR#_ =_ ADDR+1#_ ;]J I
— OP1
CSR Rsi}H 1ALR,
OP2
<
Cache > — Decoder 2
o S
— — He{or1 i\ P
- g L _’; L %<>— op2 ALU RsUH —>§ > > =
° ol kil > MEM 3
> D
GPR > ©
MEM P 3
=
OP1
—{or2 FPU RsU—
—1] OPR
Instruction Fetch (IF) Instruction Decode (ID) Execution (EX) Memory Access (MA)

Top-level micro-architecture of a 5-stage pipelined RISC-V processor

RC.1. Achieving approximation

» To verify our assumption,
» Randomly generated and executed 1,000 instructions
» Executed the generated instructions and record the execution time

_ ADDR#_ =_ ADDR+1#_ ;]J N
— or1
CSR RSt 1ALR,
OoP2
<
Cache > —{ Decoder 2
o =
— = K] or2 2 g
- g L _’; L %<>— or2 ALU RsU— —»E > > =
° ol kil > MEM 3
> (0]
GPR > ©
MEM P>)
(@]
Ly
OP1
—{or2 FPU RsU—
—1 OPR
Instruction Fetch (IF) Instruction Decode (ID) Execution (EX) Memory Access (MA)

Top-level micro-architecture of a 5-stage pipelined RISC-V processor

RC.1. Achieving approximation

» To verify our assumption,
» Randomly generated and executed 1,000 instructions
» Executed the generated instructions and record the execution time
» The floating point (FP) computation dominates an instruction’s execution time

30

25
20
15

10

5 L
o L[— 1

IF:CH CM ID EX:CT INT FP MA WB
Experimental Results

RC.1. Achieving approximation

» FP computation is returned in a single clock cycle when it meets a trivial case (TC)

30

25

20

15

10

» Eg.,0xY=0

[| /™ .

IF:CH

M

EX:CT INT FP TC-hit MA
Experimental Results

WB

TIndex # OPR OPI OP2 RD
1 ADD (+) 0 X X
2 ADD (+) X 0 X
3 ADD (+) X D' 0
4 SUB () X 0 X
5 SUB (-) 0 X X
6 SUB (-) X X 0
7 MULT (x) X 0 0
8 MULT (x) 0 X 0
9 MULT (x) X +1 =+X
10 MULT (x) 41 X =+X
11 DIV (=) 0 X 0
12 DIV (=) X 41 +X

Travail Case (TC)

RC.1. Achieving approximation

» FP computation is returned in a single clock cycle when it meets a trivial case (TC)

» Eg.,0xY=0

» Achieving approximation at the FPU

» While designing the new processor, RC.2 is recalled:
» Supporting run-time configurations of the approximation degree

30

25

20

15

10

5

0]

» Cutting down the valid bit-width of input operands, e.g.,

1.071 x 1.001 (TC-miss) ~ 1.07 x 1.00 (TC-hit) = 1.07

[| /™ .

IF:CH

M

EX:CT INT FP TC-hit MA
Experimental Results

WB

Tndex # OPR OPI OP2 RD
1 ADD (+) 0 X X
2 ADD (+) X 0 X
3 ADD (+) X D' 0
4 SUB () X 0 X
5 SUB (-) 0 X X
6 SUB (-) X X 0
7 MULT (x) X 0 0
8 MULT (x) 0 X 0
9 MULT (x) X +1 =+X
10 MULT (x) 41 X =+X
11 DIV (=) 0 X 0
12 DIV (=) X 41 +X

Travail Case (TC)

HIART-FPU

» The top-level design of the proposed FPU contains three modules:
» Cached-FPU (C-FPU) — executes FP calculations if TC-miss
» Trivial Computation Unit (TCU) — executes FP calculation if TC-hit
» Approximation Unit (APU) — controls the approximation degree of input data

0x0 > op1
3> APU i B S L G IT RS

0x0]——> OPR

RSL
oP1 ot
TC-hitp—

oP2 —D »|op2 TCU RSL
OPR 3 »|oPR

——» Data Path — > Control Path

HIART-FPU

» The top-level design of the proposed FPU contains three modules
» Cached-FPU (C-FPU) — executes FP calculations if TC-miss
» Trivial Computation Unit (TCU) — executes FP calculation if TC-hit
» Approximation Unit (APU) — controls the approximation degree of input data

- OPR OP1 (32 bit OP2 (32 bit
.- G20 Gzo) Cached-FPU (C-FPU)
_ - - I v v
Ctrl Ctrl
—— Pre- Pre-processing Unit Pre-processing Unit
OXO prOCeSSIng tttttt tatus

OP1 1 bit inserted l
[[TTT- Jasbit [T ITTT1T1T]
S E M _I -

>
CF ' -
oo—% [.. - ! et ey el Rt et L telteiuinteie Il I (RIS
—G> APU - yloP2 C-FPU RS % 5 Cache Bank
©w I Bl| Tag | Dat Tag | Dat
0x0 =1 a
N RSL % u
N N Calculation :_,— Crl Ctrl
OPl g Status ADD /A \Status MULT - " - " -
»| OP1 = N
TC-hitf— RN g s T - -
OP2 _'_\ | OP2 TCU RSL > 3 3 Iy e K
I S CLETPTTTITTTTL T T T]33bit [6[R[s]Rounding bits L e el S
N - A) 4 l_ _______________________ K-Way FP-Cache
N
OPR \ N cul
L J »|OPR RBudag I N A Rounding Unit

N J RL (32 bits)

——> Data Path

—— » Data Path — > Control Path

HIART-FPU

» The top-level design of the proposed FPU contains three modules
» Cached-FPU (C-FPU) — executes FP calculations if TC-miss
» Trivial Computation Unit (TCU) — executes FP calculation if TC-hit
» Approximation Unit (APU) — controls the approximation degree of input data

0x0

—»{ op1
=> APU P> C-FPU R
0x0]——> OPR
o1 p{op1
TC-hit
0P2 —1) i 0P2 TCU RSl
OPR 3 »I0oPR

- -
-
-

RSL

——» Data Path

- -
-
-
-

- o
- -
-

OP1

OP2]

\ Ly

OPR

TCM — Addition
SubTCM 1
OP1 [30:0] N R
» TChif B
o><oooooooo—#)D) H)pchit
RSl
0OP2 [30:0] SubTcM 2
OxOOOOOOOO‘;)
[30:0] 0 Sub-TCM 3
[30:0] VI
j RSU
[31] K
[31] DK@
i
0x00000000
oP1 . TChit]
TCM — Subtraction
LHor2 RS
oP1 o TChit]
TCM — Multiplication
Tjor2 RS
oP1 TChit]

0OP2

TCM — Division

RS

HIART-FPU

» The top-level design of the proposed FPU contains three modules

» Cached-FPU (C-FPU) — executes FP calculations if TC-miss
» Trivial Computation Unit (TCU) — executes FP calculation if TC-hit
» Approximation Unit (APU) — controls the approximation degree of input data

—
_20=" yfopr
4
cF 0x0
= APU A2 Cc-FPU
1~42¢]——> OPR
oP1 ylorr= <~
T~ TC-hit
82 —) »orz TCU -
OPR) OPR
) -

RSL

——» Data Path

— > Control Path

APU

'Y
Configure IFC 7

Configuration Register (8-bit)

OP1

S| E | Mantissa

10 1 0 1 0 10
\¢ <+ \¢ %@1 \¢ Jrﬁ \4» ¢/€1
M>22? T -M>21? 1 M>1? 1 M>07] C_FPU
1/0 1/0 1/0 1/0
Mask Register (23-bit) | OP2
»}
:3*7
ng »| OP1
— TCU
O]
D.
D—DS | OP2
@

S| E|] Mantissa

HIART-FPU

» The top-level design of the proposed FPU contains three modules
» Cached-FPU (C-FPU) — executes FP calculations if TC-miss

» Trivial Computation Unit (TCU) — executes FP calculation if TC-hit
» Approximation Unit (APU) — controls the approximation degree of input data

—
_20=" yfopr
4
cF 0x0
= APU A2 Cc-FPU
1~ 42]——> OPR
T=. RSL
oP1 o= <2
T~ TC-hit
oP2 —) »{or2 TCU ~~~&st
OPR) OPR ~
), & ~

——» Data Path

— > Control Path

APU — . .
W Configuration Register (8-bit) |- .
1 0 1 0 1 0 1 0
\¢ v +y 3 \¢ Jrﬁ \4» ¢/€1
M>22? M>»1? 7 M>1? M>07)
T 1 C-FPU
1/0 1/0 1/0 1/0
Mask Register (23-bit) | OP2
»}
3 .3*7
€ ~ | =
©] N
g B_"’ 5 »| op1
P ————
5 BN S
S % % »| OP2
(%]

Research Challenges of Building a practical IMCS

» Research Challenges (RC.x) whiling building a practical IMCS
» RC.1. an effective method to achieve approximation of the Lo-tasks
» RC.2. a timely method is needed to configure the approximation degree at run-
time
» RC.3. a quantitative analysis to determine the appropriate approximation degree
for each Lo-task
» RC.4. a systematic solution to realise the new features introduced by IMCS

Measurement-based method

» A measurement-based method is aiming to find Lo-task (z;)
» Approximation degree (M;) of the Lo-task

» WCET with approximation (CiAP)

Measurement-based method

» A measurement-based method is aiming to find Lo-task (z;)
» Approximation degree (M;) of the Lo-task
» WCET with approximation (CiAP)
» The measurement-based method contains three steps:
» Step 1: Initialisation and input generation
» Step 2: Experimental measures
» Step 3: Results analysis

Measurement-based method

» A measurement-based method is aiming to find Lo-task (z;)
» Approximation degree (M;) of the Lo-task
» WCET with approximation (CiAP)
» The measurement-based method contains three steps:
» Step 1: Initialisation and input generation
» Step 2: Experimental measures
» Step 3: Results analysis

Input Generation
(Random)

Measurement-based method

» A measurement-based method is aiming to find Lo-task (z;)
» Approximation degree (M;) of the Lo-task
» WCET with approximation (CiAP)
» The measurement-based method contains three steps:
» Step 1: Initialisation and input generation
» Step 2: Experimental measures
» Step 3: Results analysis

Input Generation
(Random)

Task Execution

|
|
I
M
| J
| >
|

i

T

HIART-
Core

RISC-V

Measurement-based method

» A measurement-based method is aiming to find Lo-task (z;)
» Approximation degree (M;) of the Lo-task
» WCET with approximation (CiAP)
» The measurement-based method contains three steps:
» Step 1: Initialisation and input generation
» Step 2: Experimental measures
» Step 3: Results analysis

Input Generation

Task Execution Results Analysis

| I |
(Random) I I
| | |
I M; I
| '\4’-1 T | Execution Time | AP l
| — D S I
HIART-
I c I
— = | ore | |
| | | I
I xN | |
: . | ‘ Result —_I I
| I | - | Acceptance _Yes/No| Scoreboard > QoC
r\;\llé'r.d;as.e; I T | ! = I xN I
BN T Rer T - |
| RISC-V | Result
I I |
I | |
: Specific for application domains Generic forapplication domains
- P |

Measurement-based method

» A measurement-based method is aiming to find Lo-task (z;)
» Approximation degree (M;) of the Lo-task
» WCET with approximation (CiAP)
» The measurement-based method contains three steps:
» Step 1: Initialisation and input generation
» Step 2: Experimental measures
» Step 3: Results analysis

Input Generation

Task Execution Results Analysis Example of a CNN task

| | I
(Random) I I
| | |
I M. I
'\4’ T Execution Time l
! I - : > fmax() ———— ¢/’ 90
I = | N " ! | §
| HIART- | S
< 75
p——— | Core | | §
|, ! | | £
I xN | I 3 60
: . | ‘ Result = — *~* — °° I g
()
| I I I | Acceptance IYes/No Scoreboard Qo€ < s
MNIST dataset I T I "] Test * xN I Fy .
I . = A N
: _> || Ref‘ b ¢+ — . . J I 8 30 _I 40%
I e
RISC-V Result |
| ! I 15 30%
I [| 13 15 17 21 23
: Specific for application domains Generic forapplication domains Degree of approximation(M;)
.. —.. |

Research Challenges of Building a practical IMCS

» Research Challenges (RC.x) whiling building a practical IMCS
» RC.1. an effective method to achieve approximation of the Lo-tasks
» RC.2. a timely method is needed to configure the approximation degree at run-
time
» RC.3. a quantitative analysis to determine the appropriate approximation degree
for each lo-task
» RC.4. a systematic solution to realize the new features introduced by IMCS

HIART-MCS: System Architecture

» Conventional MCS architecture
» Two system modes
» Lo-Mode: Lo-tasks + Hi-tasks
» Hi-Mode: Hi-tasks
» Software tasks are managed by an OS
» Executions are monitored by a monitor

Lo-Task Lo-Task Hi-Task <. Hi-Task
Application Level
OS Level
OS Kernel L|b.Mode_ Execution Monitor
Switch
Software
Hardware Intr.
I/Os Memory Processor Timer: HFMode

System Architecture of Conventional MCS

HIART-MCS: System Architecture

» Conventional MCS architecture
» Two system modes
» Lo-Mode: Lo-tasks + Hi-tasks
» Hi-Mode: Hi-tasks
» Software tasks are managed by an OS
» Executions are monitored by a monitor

Lo-Task Lo-Task Hi-Task Hi-Task
Application Level
OS Level
OS Kernel L|b.Mode_ Execution Monitor
Switch
Software
Hardware Intr.
I/Os Memory Processor Timer: HFMode

System Architecture of Conventional MCS

>

HIHART MCS architecture

» Three system modes
» Lo-Mode: Lo-tasks + Hi-tasks
» Mid-Mode: Lo-tasks (AP) + Hi-tasks
» Hi-Mode: Hi-tasks

» Software: modifying the execution monitor

» Hardware: deploying HIART-processor

» Source Compatibility

Lo-Task Lo-Task Hi-Task Hi-Task
Application Level
[oSLevel T
Lib.Mode
OS Kernel I . - Execution Monitor
Switch |
- -
Software
Hardware + M Intr. Intr.
HIART - TimerMID TimerHI-
I/Os Memor
/ ¥ Processor -Mode Mode

System Architecture of HIART-MCS

Outline

Mixed-Criticality System (MCS)

Motivation and Research Challenges: Imprecise MCS
HIART-MCS: Method, Architecture, and Design
Theoretical Model and Optimisation

Evaluation

Conclusion

VVVYYVYY

Theoretical Model and Optimisation

» To support the newly introduced Mid-Mode, we need
» (a) To have a corresponding timing analysis;
» (b) A way to work out the best switching instances.
» For (a), we follow the analysis AMC-rtb, and adapted a response time analysis for
our triple-mode system:

R.
Ry —CM {_1 o o
je;;m) oLl R =Ci'+) {_l e
_RLO Lo Tj chpH(7) J
+ Z jﬁ _‘Cj RMIT
FERPL(3) J -+ Z { 77;1@ —‘Ck
"R — R°7 _ap 71 €hpL(i)
DI = e

Eq 2. Response time of Hi-tasks

Eq 1. Response time of Hi-tasks from Mid- to Hi- mode (Lo-tasks
from Lo- to Mid- mode are terminated)

Theoretical Model and Optimisation

» To support the newly introduced Mid-Mode, we need
» (a) To have a corresponding timing analysis;
» (b) A way to work out the best switching instances.
» For (a), we follow the analysis AMC-rtb, and adapted a response time analysis for
our triple-mode system:

R.
Ry —CM {_1 o o
je;;m) oLl R =Ci'+) {_l e
_RLO Lo Tj chpH(7) J
+ Z jﬁ _‘Cj RMIT
FERPL(3) J -+ Z { 77;1@ —‘Ck
"R — R°7 _ap 71 €hpL(i)
DI = e

Eq 2. Response time of Hi-tasks

Eq 1. Response time of Hi-tasks from Mid- to Hi- mode (Lo-tasks
from Lo- to Mid- mode are terminated)

Theoretical Model and Optimisation

» To support the newly introduced Mid-Mode, we need
» (a) To have a corresponding timing analysis;
» (b) A way to work out the best switching instances.
» For (b), we proposed two strategies to find the optimal switching time:
» 1. Solving by priority ordering: choose the Lo-task that has the highest priority

first, then scale its Cl-MI until the system is not schedulable.
CM' = argmax(R; < D;,Vj €T)
C

(2

» 2. Solving by global scaling: in this case, the Cl-MI of the Lo-tasks will be scaled
globally by a factor y. The searching is done using binary search with a time
complexity of O(log(n)).

vi e T oM = L0 4 [y (O™ — 1)

Outline

Mixed-Criticality System (MCS)

Motivation and Research Challenges: Imprecise MCS
HIART-MCS: Method, Architecture, and Design
Theoretical Model and Optimisation

Evaluation

Conclusion

VVVYYVYY

Experimental Platform

» Platform: Xilinx VC709 Evaluation Board
» Processors: 16 HIART-processor
> RSIC-V ISA
» 5-stage pipeline
» 4KB instruction and data cache
» Interconnect: 5 x 5 BlueShell Network-on-Chip
» Operating system: FreeRTOS v.10.4

» Examined systems
» Legacy: a system without MCS feature
» BS|OSK: an MCS running execution monitor inside OS kernel
» BS|HYP : an MCS running execution monitor interpedently
» HIART-MCS

Theoretical Evaluation

» Experiment Setup:
» Tasks are randomly generated, with utilization ranging from 0.5-0.95 (0.1-0.9 for

the schedulability experiment); v is set to be 0.1-0.9 (and in the schedulability
analysis, it was searched using the proposed method).
» Each trial (a single data point in the plots) consist 1,000 runs.
» Observation: The proposed MCS model outperforms the traditional dual-mode
model (i.e. without the Mid-mode) in terms of su1rvivability and schedulability.

5

O X
0.1

0.2

o
©

0.3

o
o™

05

Schedulability

o
9

~—&—— without MID mode
— » —with MID mode

0.6

0.7

o
o

0.8

o
)
o

05 055 06 065 07 075 08 085 09 0.2 04 0.6 0.8 1

Il > Uil

(a) Survivability evaluation (in difference) (b) Schedulability evaluation

0.9

Theoretical Evaluation

» Experiment Setup:
» Tasks are randomly generated, with utilization ranging from 0.5-0.95 (0.1-0.9 for

the schedulability experiment); v is set to be 0.1-0.9 (and in the schedulability
analysis, it was searched using the proposed method).
» Each trial (a single data point in the plots) consist 1,000 runs.
» Observation: The proposed MCS model outperforms the traditional dual-mode
model (i.e. without the Mid-mode) in terms of su1rvivability and schedulability.

5

O X
0.1

0.2

o
©

0.3

o
o™

05

Schedulability

o
9

~—&—— without MID mode
— » —with MID mode

0.6

0.7

o
o

0.8

o
)
o

05 055 06 065 07 075 08 085 09 0.2 04 0.6 0.8 1

Il > Uil

(a) Survivability evaluation (in difference) (b) Schedulability evaluation

0.9

Software Overhead

» Experimental Setup
» Operating Systems: native FreeRTOS kernel with essential I/O drivers

» Tool: RISC-V GNU tool-chain
» Metrics: memory footprint (unit: KB)

» Observation: HIART-MCS requires less memory footprint than BS|HYP. Its software
overhead is similar to BS-OSK.

o5 Kerne! | ,

1

W Vanilla @ BS|OSK
Monitor [EEE 1
] CBS|HYP 03 HIART-MCS | x
0 30 60 90 120 150 180 210

Run-time Software Overhead (Unit: KB)

Hardware Overhead

» Experimental Setup
» HIART-Processor: support run-time approximation of 100 tasks
» Conventional RSIC-V processor
» Other system elements: AXlI-Interconnect, SPI controller, and Ethernet controller
» Tool: Xilinx Vivado (v2020.2)
» Metrics: LUTs, registers, DSP, RAM, and Power.

» Observation: The design of the HIART-processor is resource-efficient compared to a
generic processor. The introduced overhead is less than the basic system elements.

LUTS Registers DSP RAM(KB) Power(mW)
AXI-IC 543 724 0 0 11
SPI 695 512 0 0 7
Ethernet 1428 895 0 0 13
RISC-V Processor 4,993 5,322 17 256 377
HIART-Processor 5,329 5,743 17 256 389
Proposed 216 387 0 0 5

Hardware Overhead

Case Study

» Task sets
> 18 Hi-tasks

» Renesas functional safety automotive use cases
» 18 Lo-tasks
» EEMBC benchmark
» DNN tasks based on LeNet-5 and SqueezeNet
» Image processing tasks: Sobel, Canny, Scharr, Prewitt, Roberts, Sharpen filters

» Experimental setup
» Activating 4/8/16 processors
» Tunning system target utilisation from 45% to 100%

» Metrics
» Hi-tasks: success ratio
» Lo-Tasks: number of services (NoS)
» Hi-Tasks and Lo-Tasks: average Quality of Computation (QoC)

Case Study: Results

» Observations
» For Hl-tasks, HIART-MCS ensures similar success ratios compared to conventional
MCS frameworks
» For LO-tasks, HIART-MCS significantly increases throughput and decreases
experimental variances compared to conventional MCS frameworks
» HIART-MCS slightly decreases overall computation quality

[—e— BS-0SK-4-core —aA— BS-HYP-4core —>— HIART-MCS-4-core 2 1.4

BS-OSK-8-core BS-HYP-8-core HIART-MCS-8-core W BS-OSK @ BS-HYP [OJHIART-MCS EBS-OSK MBS-HYP [OHIART-MCS
---©-- BS-0OSK-16-core ---#A-— BS-HYP-16-core —--3¢-—- HIART-MCS-16-core J
)) 16 - 1.2 +
1 —— —
)

008 1.2 1t
: 0.6 P .
@ 08 | 0.8 |
g 0.4
3 L L
3 0.2 0.4 0.6

0 A 0 0.4

0.5 0.6 0.7 0.8 0.9 1 4-core 8-core 16-core 4-core 8-core 16-core

(a) HI-tasks: success ratio (x-axis: utilisation). (b) Lo-tasks: average NoS. (c) System level: average QoC.

Outline

Mixed-Criticality System (MCS)

Motivation and Research Challenges: Imprecise MCS
HIART-MCS: Method, Architecture, and Design
Theoretical Model and Optimisation

Evaluation

Conclusion

VVVYYVYY

Conclusion

» In safety-critical systems, Mixed-Criticality System (MCS) is a vital direction.

» Mode switch is a useful strategy in MCS but could cause safety risks.

» To mitigate these risks, we present a systematic framework, named HIART-MCS
» A processor supporting hardware-level approximation
» A measurement-based method to configure the processor
» A new system architecture
» Theoretical analysis and optimization

» Results
» Effectively improving LO-task survivability with negligible impact on HI-tasks
» Resource-efficient

Acknowledgement

We would like to thank the helpful feedback given by the reviewers from RTSS 2021 and the
Special issue of real-time systems from Transactions on Computers (TC).

