
A High-Resilience Imprecise Computing
Architecture for Mixed-Criticality Systems

Zhe Jiang[1][2], Xiaotian Dai[1], Alan Burns[1], Neil Audsley[3]
ZongHua Gu[4], Ian Gray[1]
1University of York, United Kingdom
2University of Cambridge, United Kingdom
3City, University of London, United Kingdom
4Umea University, Sweden

Outline
Ø Mixed-Criticality System (MCS)
Ø Motivation and Research Challenges: Imprecise MCS
Ø HIART-MCS: Method, Architecture, and Design
Ø Theoretical Model and Optimisation
Ø Evaluation
Ø Conclusion

Outline
Ø Mixed-Criticality System (MCS)
Ø Motivation and Research Challenges: Imprecise MCS
Ø HIART-MCS: Method, Architecture, and Design
Ø Theoretical Model and Optimisation
Ø Evaluation
Ø Conclusion

Safety Criticality Levels
Ø Criticality level: the required safety assurance level of system components.

Engine Control System

Criticality Level:
High

Body Control System

Criticality Level:
Low

Safety Criticality Levels
Ø Criticality level: the required safety assurance level of system components.

Ø Different critical modules are now implemented using different chips.

Data Fusion
Level B, up to Level D

SRR,MRR,LRR
Level D

Adaptive Cruise Control
Level D

Battery Management(12V,48V,HV)
Level C

Motor (Alterno Starter,eAxel drive…)
Level C

DC-DC Converter
Level C

Transmission Control
Level D

Engine Management Unit
Level D

Electric Power Steering
Level C

Suspension/Dumping
Level C

Body Control
Level B

Mixed-Criticality System (MCS)

Mixed-Criticality System (MCS)
Ø Mixed-Criticality System: designing different critical components onto a shared

hardware platform.

Key Benefits Final goal

Overhead optimization

Size Weight Power

Cost

System diversity & possibility

…

All systems on one chip!

General System Architecture of MCS
Ø Mixed-Criticality System: designing different critical components onto a shared

hardware platform.
Ø Lo-Task: Low-criticality task
Ø Hi-Task: High-criticality task

A conventional MCS architecture

Lo-Task

OS Kernel

Application Level
OS Level

Software
Hardware

ProcessorMemoryI/Os Processor Processor

Lo-Task Hi-Task Hi-Task

General System Architecture of MCS
Ø Key problem

Ø Resource contentions
Ø Interferences

Ø In coping with these issues, the classic two-mode MCS was presented
Ø S Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance

[RTSS 2009]

A conventional MCS architecture

Lo-Task

OS Kernel

Application Level
OS Level

Software
Hardware

ProcessorMemoryI/Os Processor Processor

Lo-Task Hi-Task Hi-Task

Mode Switch in MCS
Ø Dual-mode MCS introduces two system modes:

Ø Lo-mode: all tasks are executed
Ø Hi-mode: only Hi-tasks are executed and Lo-tasks are terminated

System in Lo-Mode System in Hi-Mode

Hi -Task

OS Kernel

Application Level
OS Level

Software
Hardware

ProcessorMemoryI/Os Processor Processor

Hi -Task Hi-Task Hi-TaskLo-Task

OS Kernel

Application Level
OS Level

Software
Hardware

ProcessorMemoryI/Os Processor Processor

Lo-Task Hi-Task Hi-Task

Mode Switch in MCS
Ø To achieve this, a system monitor is required

Ø In OS kernel, or
Ø As an independent hypervisor

Ø Many practical system frameworks were built upon this model
Ø West et al. A Virtualized Separation Kernel for Mixed-Criticality Systems [TOCS, 2016]
Ø Kim et al. Supporting I/O and IPC via fine-grained OS isolation for mixed-criticality tasks [RTNS 2018]
Ø Gadepalli et al. Chaos: a System for Criticality-Aware, Multi-core Coordination [RTAS, 2019]

Lo-Mode Hi-Mode

OS Kernel

Lo-Task

Application Level
OS Level

Software
Hardware

ProcessorMemoryI/Os

Lo-Task Hi-Task Hi-Task

Lib.Mode_
Switch

Intr.

Execution Monitor

Timer: Hi-Mode

OS Kernel

Lo-Task

Application Level
OS Level

Software
Hardware

ProcessorMemoryI/Os

Lo-Task Hi-Task Hi-Task

Lib.Mode_
Switch

Intr.

Execution Monitor

Timer: Hi-Mode

Outline
Ø Mixed-Criticality System (MCS)
Ø Motivation and Research Challenges: Imprecise MCS
Ø HIART-MCS: Method, Architecture, and Design
Ø Theoretical Model and Optimisation
Ø Evaluation
Ø Conclusion

Potential Safety Hazards in MCS and Imprecise MCS
Ø As reported, deploying safety mode switches may cause safety risks

Ø A. Burns and S.Baruah. Towards a more practical model for mixed criticality systems [WMC, 2013]
Ø S.Baruah et al. Scheduling mixed-criticality systems to guarantee some service under all non-erroneous behaviors

[ECRTS 2016]

Potential Safety Hazards in MCS and Imprecise MCS
Ø As reported, deploying safety mode switches may cause safety hazards

Ø A. Burns and S.Baruah. Towards a more practical model for mixed criticality systems [WMC, 2013]
Ø S.Baruah et al. Scheduling mixed-criticality systems to guarantee some service under all non-erroneous behaviors

[ECRTS 2016]

Ø Approximation is an effective mitigation of this problem (i.e., Imprecise MCS, IMCS):
Ø Executing Lo-tasks with decreased computing precision and less time budget
Ø Existing theoretical models for IMCS

Ø L. Huang. Graceful degradation of low-criticality tasks in multiprocessor dual-criticality systems [RTNS 2018]
Ø D.Liu. Scheduling analysis of imprecise mixed-criticality real-time tasks [TC 2018]
Ø R.M.Pathan. Improving the quality-of-service for scheduling MCSs on multiprocessor [ECRTS 2017]
Ø X. Gu. Dynamic budget management and budget reclamation for mixed-criticality systems [RTS 2019]

Ø However, a systematic system framework of IMCS is still missing…

Research Challenges of Building a practical IMCS
Ø Research Challenges (RC.x) whiling building a practical IMCS

Ø RC.1. an effective method to achieve approximation of the Lo-tasks
Ø RC.2. a timely method to configure the approximation degree at run-time
Ø RC.3. a quantitative analysis to determine the appropriate approximation degree

for each lo-task
Ø RC.4. a systematic solution to realise the new features introduced by IMCS

Outline
Ø Mixed-Criticality System (MCS)
Ø Motivation and Research Challenges: Imprecise MCS
Ø HIART-MCS: Method, Architecture, and Design
Ø Theoretical Model and Optimisation
Ø Evaluation
Ø Conclusion

RC.1. Achieving approximation
Ø The working procedures of a processor:

Ø Instruction Fetch (IF)
Ø Instruction Decode (ID)
Ø Execution (EX)
Ø Memory Access (MA)
Ø Write-Back (WB)

PC

Cache

IF|ID

GPR

Decoder

CSR

ALU

FPU
ID|EX

EX|M
A

M
A|W

B (W
rite Back)

ADDR ADDR+1

JALR

MEM
MEM

Instruction Fetch (IF) Instruction Decode (ID) Execution (EX) Memory Access (MA)

OP1

OP2
RSL

OP1
OP2
OPR

RSL

OP1
OP2
OPR

RSL

Top-level micro-architecture of a 5-stage pipelined RISC-V processor

RC.1. Achieving approximation
Ø The working procedures of a processor:

Ø Instruction Fetch (IF)
Ø Instruction Decode (ID)
Ø Execution (EX)
Ø Memory Access (MA)
Ø Write-Back (WB)

PC

Cache

IF|ID

GPR

Decoder

CSR

ALU

FPU
ID|EX

EX|M
A

M
A|W

B (W
rite Back)

ADDR ADDR+1

JALR

MEM
MEM

Instruction Fetch (IF) Instruction Decode (ID) Execution (EX) Memory Access (MA)

OP1

OP2
RSL

OP1
OP2
OPR

RSL

OP1
OP2
OPR

RSL

Top-level micro-architecture of a 5-stage pipelined RISC-V processor

RC.1. Achieving approximation
Ø To verify our assumption,

Ø Randomly generated and executed 1,000 instructions
Ø Executed the generated instructions and record the execution time

PC

Cache

IF|ID

GPR

Decoder

CSR

ALU

FPU
ID|EX

EX|M
A

M
A|W

B (W
rite Back)

ADDR ADDR+1

JALR

MEM
MEM

Instruction Fetch (IF) Instruction Decode (ID) Execution (EX) Memory Access (MA)

OP1

OP2
RSL

OP1
OP2
OPR

RSL

OP1
OP2
OPR

RSL

Top-level micro-architecture of a 5-stage pipelined RISC-V processor

RC.1. Achieving approximation
Ø To verify our assumption,

Ø Randomly generated and executed 1,000 instructions
Ø Executed the generated instructions and record the execution time

Ø The floating point (FP) computation dominates an instruction’s execution time

Experimental Results

RC.1. Achieving approximation
Ø FP computation is returned in a single clock cycle when it meets a trivial case (TC)

Ø E.g., 0 x Y = 0

Experimental Results Travail Case (TC)

RC.1. Achieving approximation
Ø FP computation is returned in a single clock cycle when it meets a trivial case (TC)

Ø E.g., 0 x Y = 0
Ø Achieving approximation at the FPU

Ø Cutting down the valid bit-width of input operands, e.g.,

ØWhile designing the new processor, RC.2 is recalled:
Ø Supporting run-time configurations of the approximation degree

Experimental Results Travail Case (TC)

HIART-FPU
Ø The top-level design of the proposed FPU contains three modules:

Ø Cached-FPU (C-FPU) – executes FP calculations if TC-miss
Ø Trivial Computation Unit (TCU) – executes FP calculation if TC-hit
Ø Approximation Unit (APU) – controls the approximation degree of input data

C-FPU

TCU

0x0

0x0

0x0

TC-hit

APU

OP1

OP2

OPR

OP1

OP2

OPR

RSL

RSL

RSL

OP1

OP2

OPR

CFG

Data Path Control Path

HIART-FPU
Ø The top-level design of the proposed FPU contains three modules

Ø Cached-FPU (C-FPU) – executes FP calculations if TC-miss
Ø Trivial Computation Unit (TCU) – executes FP calculation if TC-hit
Ø Approximation Unit (APU) – controls the approximation degree of input data

C-FPU

TCU

0x0

0x0

0x0

TC-hit

APU

OP1

OP2

OPR

OP1

OP2

OPR

RSL

RSL

RSL

OP1

OP2

OPR

CFG

Data Path Control Path

HIART-FPU
Ø The top-level design of the proposed FPU contains three modules

Ø Cached-FPU (C-FPU) – executes FP calculations if TC-miss
Ø Trivial Computation Unit (TCU) – executes FP calculation if TC-hit
Ø Approximation Unit (APU) – controls the approximation degree of input data

C-FPU

TCU

0x0

0x0

0x0

TC-hit

APU

OP1

OP2

OPR

OP1

OP2

OPR

RSL

RSL

RSL

OP1

OP2

OPR

CFG

Data Path Control Path

0x00000000
[30:0]

Sub-TCM 1

0x00000000
[30:0]

0x00000000

[30:0]
[30:0]

[31]
[31]

TC-hit

RSL

OP1

OP2
TCM – Subtraction

TC-hit

RSL

OP1

OP2
TCM – Multiplication

TC-hit

RSL

OP1

OP2
TCM – Division

TC-hit

RSL

TCM – Addition

TC-hit

RSL

OP1

OP2

OPR

TC-hit

RSL

OP1

OP2 Sub-TCM 2

Sub-TCM 3

HIART-FPU
Ø The top-level design of the proposed FPU contains three modules

Ø Cached-FPU (C-FPU) – executes FP calculations if TC-miss
Ø Trivial Computation Unit (TCU) – executes FP calculation if TC-hit
Ø Approximation Unit (APU) – controls the approximation degree of input data

C-FPU

TCU

0x0

0x0

0x0

TC-hit

APU

OP1

OP2

OPR

OP1

OP2

OPR

RSL

RSL

RSL

OP1

OP2

OPR

CFG

Data Path Control Path

.. . 1/0 1/0

1 0

M >0?

1 0

M >1?

Configuration Register (8-bit)Configure IFC

...

1/0 1/0

1 0

M >21?

1 0

M >22?

APU

TCU

C-FPU

OP1

OP2

OP1

OP2

Mask Register (23-bit)

HIART-FPU
Ø The top-level design of the proposed FPU contains three modules

Ø Cached-FPU (C-FPU) – executes FP calculations if TC-miss
Ø Trivial Computation Unit (TCU) – executes FP calculation if TC-hit
Ø Approximation Unit (APU) – controls the approximation degree of input data

C-FPU

TCU

0x0

0x0

0x0

TC-hit

APU

OP1

OP2

OPR

OP1

OP2

OPR

RSL

RSL

RSL

OP1

OP2

OPR

CFG

Data Path Control Path

.. . 1/0 1/0

1 0

M >0?

1 0

M >1?

Configuration Register (8-bit)Configure IFC

...

1/0 1/0

1 0

M >21?

1 0

M >22?

APU

TCU

C-FPU

OP1

OP2

OP1

OP2

Mask Register (23-bit)

Research Challenges of Building a practical IMCS
Ø Research Challenges (RC.x) whiling building a practical IMCS

Ø RC.1. an effective method to achieve approximation of the Lo-tasks
Ø RC.2. a timely method is needed to configure the approximation degree at run-

time
Ø RC.3. a quantitative analysis to determine the appropriate approximation degree

for each Lo-task
Ø RC.4. a systematic solution to realise the new features introduced by IMCS

Measurement-based method
Ø A measurement-based method is aiming to find Lo-task (𝜏!)

Ø Approximation degree (𝑀!) of the Lo-task
Ø WCET with approximation (𝐶!"#)

Measurement-based method
Ø A measurement-based method is aiming to find Lo-task (𝜏!)

Ø Approximation degree (𝑀!) of the Lo-task
Ø WCET with approximation (𝐶!"#)

Ø The measurement-based method contains three steps:
Ø Step 1: Initialisation and input generation
Ø Step 2: Experimental measures
Ø Step 3: Results analysis

Measurement-based method
Ø A measurement-based method is aiming to find Lo-task (𝜏!)

Ø Approximation degree (𝑀!) of the Lo-task
Ø WCET with approximation (𝐶!"#)

Ø The measurement-based method contains three steps:
Ø Step 1: Initialisation and input generation
Ø Step 2: Experimental measures
Ø Step 3: Results analysis

Measurement-based method
Ø A measurement-based method is aiming to find Lo-task (𝜏!)

Ø Approximation degree (𝑀!) of the Lo-task
Ø WCET with approximation (𝐶!"#)

Ø The measurement-based method contains three steps:
Ø Step 1: Initialisation and input generation
Ø Step 2: Experimental measures
Ø Step 3: Results analysis

Measurement-based method
Ø A measurement-based method is aiming to find Lo-task (𝜏!)

Ø Approximation degree (𝑀!) of the Lo-task
Ø WCET with approximation (𝐶!"#)

Ø The measurement-based method contains three steps:
Ø Step 1: Initialisation and input generation
Ø Step 2: Experimental measures
Ø Step 3: Results analysis

Measurement-based method
Ø A measurement-based method is aiming to find Lo-task (𝜏!)

Ø Approximation degree (𝑀!) of the Lo-task
Ø WCET with approximation (𝐶!"#)

Ø The measurement-based method contains three steps:
Ø Step 1: Initialisation and input generation
Ø Step 2: Experimental measures
Ø Step 3: Results analysis

Research Challenges of Building a practical IMCS
Ø Research Challenges (RC.x) whiling building a practical IMCS

Ø RC.1. an effective method to achieve approximation of the Lo-tasks
Ø RC.2. a timely method is needed to configure the approximation degree at run-

time
Ø RC.3. a quantitative analysis to determine the appropriate approximation degree

for each lo-task
Ø RC.4. a systematic solution to realize the new features introduced by IMCS

HIART-MCS: System Architecture
Ø Conventional MCS architecture

Ø Two system modes
Ø Lo-Mode: Lo-tasks + Hi-tasks
Ø Hi-Mode: Hi-tasks

Ø Software tasks are managed by an OS
Ø Executions are monitored by a monitor

OS Kernel

Lo-Task

Application Level
OS Level

Software
Hardware

ProcessorMemoryI/Os

Lo-Task Hi-Task Hi-Task

Lib.Mode_
Switch

Intr.

Execution Monitor

Timer: Hi-Mode

System Architecture of Conventional MCS

HIART-MCS: System Architecture
Ø Conventional MCS architecture

Ø Two system modes
Ø Lo-Mode: Lo-tasks + Hi-tasks
Ø Hi-Mode: Hi-tasks

Ø Software tasks are managed by an OS
Ø Executions are monitored by a monitor

OS Kernel

Lo-Task

Application Level
OS Level

Software
Hardware

ProcessorMemoryI/Os

Lo-Task Hi-Task Hi-Task

Lib.Mode_
Switch

Intr.

Execution Monitor

Timer: Hi-Mode

System Architecture of Conventional MCS

Ø HIHART MCS architecture
Ø Three system modes

Ø Lo-Mode: Lo-tasks + Hi-tasks
Ø Mid-Mode: Lo-tasks (AP) + Hi-tasks
Ø Hi-Mode: Hi-tasks

Ø Software: modifying the execution monitor
Ø Hardware: deploying HIART-processor
Ø Source Compatibility

OS Kernel

Lo-Task

Application Level
OS Level

Software
Hardware

MemoryI/Os

Lo-Task Hi-Task Hi-Task

Lib.Mode_
Switch

Execution Monitor

HIART -
Processor

Timer:MID
-Mode

Timer:HI-
Mode

Intr . Intr .Mi

System Architecture of HIART-MCS

Outline
Ø Mixed-Criticality System (MCS)
Ø Motivation and Research Challenges: Imprecise MCS
Ø HIART-MCS: Method, Architecture, and Design
Ø Theoretical Model and Optimisation
Ø Evaluation
Ø Conclusion

Theoretical Model and Optimisation
Ø To support the newly introduced Mid-Mode, we need

Ø (a) To have a corresponding timing analysis;
Ø (b) A way to work out the best switching instances.

Ø For (a), we follow the analysis AMC-rtb, and adapted a response time analysis for
our triple-mode system:

Eq 1. Response time of Hi-tasks
from Lo- to Mid- mode

Eq 2. Response time of Hi-tasks
from Mid- to Hi- mode (Lo-tasks
are terminated)

Theoretical Model and Optimisation
Ø To support the newly introduced Mid-Mode, we need

Ø (a) To have a corresponding timing analysis;
Ø (b) A way to work out the best switching instances.

Ø For (a), we follow the analysis AMC-rtb, and adapted a response time analysis for
our triple-mode system:

Eq 1. Response time of Hi-tasks
from Lo- to Mid- mode

Eq 2. Response time of Hi-tasks
from Mid- to Hi- mode (Lo-tasks
are terminated)

Theoretical Model and Optimisation
Ø To support the newly introduced Mid-Mode, we need

Ø (a) To have a corresponding timing analysis;
Ø (b) A way to work out the best switching instances.

Ø For (b), we proposed two strategies to find the optimal switching time:
Ø 1. Solving by priority ordering: choose the Lo-task that has the highest priority

first, then scale its 𝐶!$% until the system is not schedulable.

Ø 2. Solving by global scaling: in this case, the 𝐶!$% of the Lo-tasks will be scaled
globally by a factor g. The searching is done using binary search with a time
complexity of 𝑂 log 𝑛 .

Outline
Ø Mixed-Criticality System (MCS)
Ø Motivation and Research Challenges: Imprecise MCS
Ø HIART-MCS: Method, Architecture, and Design
Ø Theoretical Model and Optimisation
Ø Evaluation
Ø Conclusion

Experimental Platform
ØPlatform: Xilinx VC709 Evaluation Board
ØProcessors: 16 HIART-processor

ØRSIC-V ISA
Ø5-stage pipeline
Ø4KB instruction and data cache

Ø Interconnect: 5 x 5 BlueShell Network-on-Chip
ØOperating system: FreeRTOS v.10.4

ØExamined systems
Ø Legacy: a system without MCS feature
ØBS|OSK: an MCS running execution monitor inside OS kernel
ØBS|HYP : an MCS running execution monitor interpedently
ØHIART-MCS

Theoretical Evaluation
Ø Experiment Setup:

Ø Tasks are randomly generated, with utilization ranging from 0.5-0.95 (0.1-0.9 for
the schedulability experiment); g is set to be 0.1-0.9 (and in the schedulability
analysis, it was searched using the proposed method).

Ø Each trial (a single data point in the plots) consist 1,000 runs.
Ø Observation: The proposed MCS model outperforms the traditional dual-mode

model (i.e. without the Mid-mode) in terms of survivability and schedulability.

(a) Survivability evaluation (in difference) (b) Schedulability evaluation

Theoretical Evaluation
Ø Experiment Setup:

Ø Tasks are randomly generated, with utilization ranging from 0.5-0.95 (0.1-0.9 for
the schedulability experiment); g is set to be 0.1-0.9 (and in the schedulability
analysis, it was searched using the proposed method).

Ø Each trial (a single data point in the plots) consist 1,000 runs.
Ø Observation: The proposed MCS model outperforms the traditional dual-mode

model (i.e. without the Mid-mode) in terms of survivability and schedulability.

(a) Survivability evaluation (in difference) (b) Schedulability evaluation

Software Overhead
ØExperimental Setup

ØOperating Systems: native FreeRTOS kernel with essential I/O drivers
ØTool: RISC-V GNU tool-chain

ØMetrics: memory footprint (unit: KB)

ØObservation: HIART-MCS requires less memory footprint than BS|HYP. Its software
overhead is similar to BS-OSK.

Run-time Software Overhead (Unit: KB)

Hardware Overhead
ØExperimental Setup

ØHIART-Processor: support run-time approximation of 100 tasks
ØConventional RSIC-V processor
ØOther system elements: AXI-Interconnect, SPI controller, and Ethernet controller
ØTool: Xilinx Vivado (v2020.2)

ØMetrics: LUTs, registers, DSP, RAM, and Power.

ØObservation: The design of the HIART-processor is resource-efficient compared to a
generic processor. The introduced overhead is less than the basic system elements.

Hardware Overhead

Case Study
ØTask sets

Ø18 Hi-tasks
Ø Renesas functional safety automotive use cases

Ø18 Lo-tasks
Ø EEMBC benchmark
Ø DNN tasks based on LeNet-5 and SqueezeNet
Ø Image processing tasks: Sobel, Canny, Scharr, Prewitt, Roberts, Sharpen filters

ØExperimental setup
Ø Activating 4/8/16 processors
Ø Tunning system target utilisation from 45% to 100%

Ø Metrics
Ø Hi-tasks: success ratio
Ø Lo-Tasks: number of services (NoS)
Ø Hi-Tasks and Lo-Tasks: average Quality of Computation (QoC)

Case Study: Results
ØObservations

Ø For HI-tasks, HIART-MCS ensures similar success ratios compared to conventional
MCS frameworks

Ø For LO-tasks, HIART-MCS significantly increases throughput and decreases
experimental variances compared to conventional MCS frameworks

ØHIART-MCS slightly decreases overall computation quality

Outline
Ø Mixed-Criticality System (MCS)
Ø Motivation and Research Challenges: Imprecise MCS
Ø HIART-MCS: Method, Architecture, and Design
Ø Theoretical Model and Optimisation
Ø Evaluation
Ø Conclusion

Conclusion
Ø In safety-critical systems, Mixed-Criticality System (MCS) is a vital direction.
Ø Mode switch is a useful strategy in MCS but could cause safety risks.
Ø To mitigate these risks, we present a systematic framework, named HIART-MCS

Ø A processor supporting hardware-level approximation
Ø A measurement-based method to configure the processor
Ø A new system architecture
Ø Theoretical analysis and optimization

Ø Results
Ø Effectively improving LO-task survivability with negligible impact on HI-tasks
Ø Resource-efficient

Acknowledgement
We would like to thank the helpful feedback given by the reviewers from RTSS 2021 and the
Special issue of real-time systems from Transactions on Computers (TC).

