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Safety Criticality Levels
Ø Criticality level: the required safety assurance level of system components.
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Ø Different critical modules are now implemented using different chips.
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Mixed-Criticality System (MCS)
Ø Mixed-Criticality System: designing different critical components onto a shared 

hardware platform.

Key Benefits Final goal

Overhead optimization

Size Weight Power

Cost

System diversity & possibility 

…

All systems on one chip!



General System Architecture of MCS
Ø Mixed-Criticality System: designing different critical components onto a shared 

hardware platform.
Ø Lo-Task: Low-criticality task
Ø Hi-Task: High-criticality task

A conventional MCS architecture
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General System Architecture of MCS
Ø Key problem

Ø Resource contentions
Ø Interferences

Ø In coping with these issues, the classic two-mode MCS was presented
Ø S Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance 

[RTSS 2009] 

A conventional MCS architecture
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Mode Switch in MCS
Ø Dual-mode MCS introduces two system modes:

Ø Lo-mode: all tasks are executed
Ø Hi-mode: only Hi-tasks are executed and Lo-tasks are terminated
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Mode Switch in MCS
Ø To achieve this, a system monitor is required

Ø In OS kernel, or
Ø As an independent hypervisor 

Ø Many practical system frameworks were built upon this model
Ø West et al. A Virtualized Separation Kernel for Mixed-Criticality Systems [TOCS, 2016]
Ø Kim et al. Supporting I/O and IPC via fine-grained OS isolation for mixed-criticality tasks [RTNS 2018]
Ø Gadepalli et al. Chaos: a System for Criticality-Aware, Multi-core Coordination [RTAS, 2019]
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Potential Safety Hazards in MCS and Imprecise MCS
Ø As reported, deploying safety mode switches may cause safety risks

Ø A. Burns and S.Baruah. Towards a more practical model for mixed criticality systems [WMC, 2013]
Ø S.Baruah et al. Scheduling mixed-criticality systems to guarantee some service under all non-erroneous behaviors 

[ECRTS 2016]
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Ø Approximation is an effective mitigation of this problem (i.e., Imprecise MCS, IMCS):
Ø Executing Lo-tasks with decreased computing precision and less time budget
Ø Existing theoretical models for IMCS

Ø L. Huang. Graceful degradation of low-criticality tasks in multiprocessor dual-criticality systems [RTNS 2018]
Ø D.Liu. Scheduling analysis of imprecise mixed-criticality real-time tasks [TC 2018]
Ø R.M.Pathan. Improving the quality-of-service for scheduling MCSs on multiprocessor [ECRTS 2017]
Ø X. Gu. Dynamic budget management and budget reclamation for mixed-criticality systems [RTS 2019]

Ø However, a systematic system framework of IMCS is still missing…



Research Challenges of Building a practical IMCS
Ø Research Challenges (RC.x) whiling building a practical IMCS

Ø RC.1. an effective method to achieve approximation of the Lo-tasks
Ø RC.2. a timely method to configure the approximation degree at run-time
Ø RC.3. a quantitative analysis to determine the appropriate approximation degree 

for each lo-task
Ø RC.4. a systematic solution to realise the new features introduced by IMCS
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RC.1. Achieving approximation
Ø The working procedures of a processor:

Ø Instruction Fetch (IF)
Ø Instruction Decode (ID)
Ø Execution (EX)
Ø Memory Access (MA)
Ø Write-Back (WB)
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Top-level micro-architecture of a 5-stage pipelined RISC-V processor
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RC.1. Achieving approximation
Ø To verify our assumption,

Ø Randomly generated and executed 1,000 instructions
Ø Executed the generated instructions and record the execution time
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RC.1. Achieving approximation
Ø To verify our assumption,

Ø Randomly generated and executed 1,000 instructions
Ø Executed the generated instructions and record the execution time

Ø The floating point (FP) computation dominates an instruction’s execution time

Experimental Results



RC.1. Achieving approximation
Ø FP computation is returned in a single clock cycle when it meets a trivial case (TC)

Ø E.g., 0 x Y = 0

Experimental Results Travail Case (TC)



RC.1. Achieving approximation
Ø FP computation is returned in a single clock cycle when it meets a trivial case (TC)

Ø E.g., 0 x Y = 0
Ø Achieving approximation at the FPU

Ø Cutting down the valid bit-width of input operands, e.g., 

ØWhile designing the new processor, RC.2 is recalled:
Ø Supporting run-time configurations of the approximation degree

Experimental Results Travail Case (TC)



HIART-FPU
Ø The top-level design of the proposed FPU contains three modules:

Ø Cached-FPU (C-FPU) – executes FP calculations if TC-miss
Ø Trivial Computation Unit (TCU) – executes FP calculation if TC-hit
Ø Approximation Unit (APU) – controls the approximation degree of input data
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Research Challenges of Building a practical IMCS
Ø Research Challenges (RC.x) whiling building a practical IMCS

Ø RC.1. an effective method to achieve approximation of the Lo-tasks
Ø RC.2. a timely method is needed to configure the approximation degree at run-

time
Ø RC.3. a quantitative analysis to determine the appropriate approximation degree 

for each Lo-task
Ø RC.4. a systematic solution to realise the new features introduced by IMCS
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Ø A measurement-based method is aiming to find Lo-task (𝜏!)

Ø Approximation degree (𝑀!) of the Lo-task
Ø WCET with approximation (𝐶!"#)
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HIART-MCS: System Architecture
Ø Conventional MCS architecture

Ø Two system modes
Ø Lo-Mode: Lo-tasks + Hi-tasks
Ø Hi-Mode: Hi-tasks

Ø Software tasks are managed by an OS
Ø Executions are monitored by a monitor
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Ø HIHART MCS architecture
Ø Three system modes

Ø Lo-Mode: Lo-tasks + Hi-tasks
Ø Mid-Mode: Lo-tasks (AP) + Hi-tasks
Ø Hi-Mode: Hi-tasks

Ø Software: modifying the execution monitor
Ø Hardware: deploying HIART-processor
Ø Source Compatibility 
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Theoretical Model and Optimisation
Ø To support the newly introduced Mid-Mode, we need 

Ø (a) To have a corresponding timing analysis;
Ø (b) A way to work out the best switching instances.  

Ø For (a), we follow the analysis AMC-rtb, and adapted a response time analysis for 
our triple-mode system:

Eq 1. Response time of Hi-tasks 
from Lo- to Mid- mode

Eq 2. Response time of Hi-tasks 
from Mid- to Hi- mode (Lo-tasks 
are terminated)
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Theoretical Model and Optimisation
Ø To support the newly introduced Mid-Mode, we need 

Ø (a) To have a corresponding timing analysis;
Ø (b) A way to work out the best switching instances.  

Ø For (b), we proposed two strategies to find the optimal switching time:
Ø 1. Solving by priority ordering: choose the Lo-task that has the highest priority 

first, then scale its 𝐶!$% until the system is not schedulable.

Ø 2. Solving by global scaling: in this case, the 𝐶!$% of the Lo-tasks will be scaled 
globally by a factor g. The searching is done using binary search with a time 
complexity of 𝑂 log 𝑛 .
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Experimental Platform
ØPlatform: Xilinx VC709 Evaluation Board
ØProcessors: 16 HIART-processor

ØRSIC-V ISA
Ø5-stage pipeline
Ø4KB instruction and data cache 

Ø Interconnect: 5 x 5 BlueShell Network-on-Chip
ØOperating system: FreeRTOS v.10.4

ØExamined systems
Ø Legacy: a system without MCS feature
ØBS|OSK: an MCS running execution monitor inside OS kernel 
ØBS|HYP : an MCS running execution monitor interpedently
ØHIART-MCS



Theoretical Evaluation
Ø Experiment Setup:

Ø Tasks are randomly generated, with utilization ranging from 0.5-0.95 (0.1-0.9 for 
the schedulability experiment); g is set to be 0.1-0.9 (and in the schedulability 
analysis, it was searched using the proposed method).

Ø Each trial (a single data point in the plots) consist 1,000 runs.
Ø Observation: The proposed MCS model outperforms the traditional dual-mode 

model (i.e. without the Mid-mode) in terms of survivability and schedulability.

(a) Survivability evaluation (in difference) (b) Schedulability evaluation
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Software Overhead
ØExperimental Setup

ØOperating Systems: native FreeRTOS kernel with essential I/O drivers
ØTool: RISC-V GNU tool-chain

ØMetrics: memory footprint (unit: KB)

ØObservation: HIART-MCS requires less memory footprint than BS|HYP. Its software 
overhead is similar to BS-OSK.

Run-time Software Overhead (Unit: KB)



Hardware Overhead
ØExperimental Setup

ØHIART-Processor: support run-time approximation of 100 tasks
ØConventional RSIC-V processor
ØOther system elements: AXI-Interconnect, SPI controller, and Ethernet controller
ØTool: Xilinx Vivado (v2020.2) 

ØMetrics: LUTs, registers, DSP, RAM, and Power.

ØObservation: The design of the HIART-processor is resource-efficient compared to a 
generic processor. The introduced overhead is less than the basic system elements.

Hardware Overhead



Case Study
ØTask sets

Ø18 Hi-tasks 
Ø Renesas functional safety automotive use cases

Ø18 Lo-tasks
Ø EEMBC benchmark
Ø DNN tasks based on LeNet-5 and SqueezeNet
Ø Image processing tasks: Sobel, Canny, Scharr, Prewitt, Roberts, Sharpen filters

ØExperimental setup
Ø Activating 4/8/16 processors
Ø Tunning system target utilisation from 45% to 100%

Ø Metrics
Ø Hi-tasks: success ratio
Ø Lo-Tasks: number of services (NoS)
Ø Hi-Tasks and Lo-Tasks: average Quality of Computation (QoC)



Case Study: Results
ØObservations

Ø For HI-tasks, HIART-MCS ensures similar success ratios compared to conventional 
MCS frameworks

Ø For LO-tasks, HIART-MCS significantly increases throughput and decreases 
experimental variances compared to conventional MCS frameworks

ØHIART-MCS slightly decreases overall computation quality
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Conclusion
Ø In safety-critical systems, Mixed-Criticality System (MCS) is a vital direction.
Ø Mode switch is a useful strategy in MCS but could cause safety risks.
Ø To mitigate these risks, we present a systematic framework, named HIART-MCS

Ø A processor supporting hardware-level approximation
Ø A measurement-based method to configure the processor
Ø A new system architecture
Ø Theoretical analysis and optimization

Ø Results
Ø Effectively improving LO-task survivability with negligible impact on HI-tasks 
Ø Resource-efficient



Acknowledgement
We would like to thank the helpful feedback given by the reviewers from RTSS 2021 and the 
Special issue of real-time systems from Transactions on Computers (TC).


