
A Secure Resilient Real-Time Recovery
Model, Scheduler, and Analysis

Abdullah Al Arafat1, Sudharsan Vaidhun2, Bryan C. Ward3 and Zhishan Guo1

1 Department of Computer Science, North Carolina State University
2 Department of Electrical and Computer Engineering, University of Central Florida

3 Department of Computer Science, Vanderbilt University

Outlines
• Background
• Problem and Assumptions
• Model
• Scheduler
• Analysis
• Experimental Results
• Conclusion

2

Background-Security (Embedded and
Connected systems)

This Photo by Unknown Author is licensed under CC BY-ND

Fig: Attack at Smart Vehicle

https://mgabol.blogspot.com/2011/08/war-texting-allows-hackers-to-unlock.html
https://creativecommons.org/licenses/by-nd/3.0/

Background-Security (Embedded and
Connected systems)

(This Photo by is licensed under CC BY-NC-ND)

This Photo by Unknown Author is licensed under CC BY-ND

Fig: Attack at Smart Vehicle
Fig: Attack through network

https://blogs.commons.georgetown.edu/cctp-820-fall2017/2017/11/15/some-thoughts-on-the-nature-of-the-internet/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://mgabol.blogspot.com/2011/08/war-texting-allows-hackers-to-unlock.html
https://creativecommons.org/licenses/by-nd/3.0/

Background-Security (Embedded and
Connected systems)

(This Photo by is licensed under CC BY-NC-ND)

This Photo by Unknown Author is licensed under CC BY-ND

Fig: Attack at Smart Vehicle
Fig: Attack through network

Microsoft: 70 percent of all security bugs
are memory safety issues

https://blogs.commons.georgetown.edu/cctp-820-fall2017/2017/11/15/some-thoughts-on-the-nature-of-the-internet/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://mgabol.blogspot.com/2011/08/war-texting-allows-hackers-to-unlock.html
https://creativecommons.org/licenses/by-nd/3.0/

Background-Security (Embedded and
Connected systems)

(This Photo by is licensed under CC BY-NC-ND)

This Photo by Unknown Author is licensed under CC BY-ND

Fig: Attack at Smart Vehicle
Fig: Attack through network

Microsoft: 70 percent of all security bugs
are memory safety issues

Chrome: 70 percent of all security bugs
are memory safety issues

https://blogs.commons.georgetown.edu/cctp-820-fall2017/2017/11/15/some-thoughts-on-the-nature-of-the-internet/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://mgabol.blogspot.com/2011/08/war-texting-allows-hackers-to-unlock.html
https://creativecommons.org/licenses/by-nd/3.0/

Background—Real Time Systems (RTS)

7

• Modern Design
– Heterogeneously Platform
– Hierarchical implementation

with real-time kernel
• Often require to share

memory/resource with non-real-
time processes

This Photo by Unknown Author is licensed under CC BY-SA

Fig: Heterogeneous Platform

https://www.electronics-lab.com/machine-learning-inference-embedded-applications-reference-design/
https://creativecommons.org/licenses/by-sa/3.0/

Background—Real Time Systems (RTS)

8

• Modern Design
– Heterogeneously

implemented with non-real-
time components (due to
SWaP-C constraint)

– Hierarchical implementation
with real-time kernel

– Connectivity (e.g., CPS, IIoT)

This Photo by Unknown Author is licensed under CC BY-SA-NC

Fig: IoT

https://aprendiendoarduino.wordpress.com/tag/proyectos-iot/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Background—Security Threats
• Security concerns of RTS

– Modern RTSs are vulnerable to security threat
– Memory-based attacks, e.g., Control Flow Hijacking[1] and

network-based attacks e.g., Mirai Botnet[2]

[1] “Control-flow integrity for real-time embedded systems”-ECRTS’19
[2] “Understanding the mirai botnet”-Usenix Security’17

9

Background—Memory-based Attack
(example – Buffer Overflow)

10
This Photo by Unknown Author is licensed under CC BY-SA

http://security.stackexchange.com/questions/135786/if-the-stack-grows-downwards-how-can-a-buffer-overflow-overwrite-content-above
https://creativecommons.org/licenses/by-sa/3.0/

Background—Memory-based Attack
(example – Buffer Overflow)

11
This Photo by Unknown Author is licensed under CC BY-SA

http://security.stackexchange.com/questions/135786/if-the-stack-grows-downwards-how-can-a-buffer-overflow-overwrite-content-above
https://creativecommons.org/licenses/by-sa/3.0/

Background—Memory-based Attack
(example – Buffer Overflow)

12
This Photo by Unknown Author is licensed under CC BY-SA

http://security.stackexchange.com/questions/135786/if-the-stack-grows-downwards-how-can-a-buffer-overflow-overwrite-content-above
https://creativecommons.org/licenses/by-sa/3.0/

Background—Memory-based Attack
(example – Buffer Overflow)

13
This Photo by Unknown Author is licensed under CC BY-SA

http://security.stackexchange.com/questions/135786/if-the-stack-grows-downwards-how-can-a-buffer-overflow-overwrite-content-above
https://creativecommons.org/licenses/by-sa/3.0/

Background—Defense
• Runtime Defense, e.g., CFI[1], DFI[2]

– Instrumented with real-time tasks
• No need to schedule separately
• Detect anomaly in real-time
• Prevent the threat by crashing/killing the attacked task

[1] “Control-flow integrity for real-time embedded systems”-ECRTS’19
[2] “RT-DFI: Optimizing data-flow integrity for real-time systems”-ECRTS’22 14

Problem
• Can we develop Security-Resilient RTS model implemented with a

Runtime Defense without crashing a critical task under attack?

• This work:
– A Resilient System Model
– Scheduler of the proposed model
– Analysis of the proposed scheduler

15

Assumptions
• RTOSs are trustworthy[1]

[1] “RT-TEE: Real-time system availability for cyber-physical systems using ARM TrustZone”-S&P’22 16

Assumptions
• RTOSs are trustworthy[1]

• Security threats are exploited through Memory Corruption

[1] “RT-TEE: Real-time system availability for cyber-physical systems using ARM TrustZone”-S&P’22 17

Assumptions
• RTOSs are trustworthy[1]

• Security threats are exploited through Memory Corruption
• RTS are implemented with a Runtime defense technique
• Security event can be detected at or before the completion of attacked task

[1] “RT-TEE: Real-time system availability for cyber-physical systems using ARM TrustZone”-S&P’22 18

Assumptions
• RTOSs are trustworthy[1]

• Security threats are exploited through Memory Corruption
• RTS are implemented with a Runtime defense technique
• Security event can be detected at or before the completion of attacked task
• Workload can be classified as security critical and non-critical

– ‘Security’ as a new dimension of criticality in MCS
– Less security-critical tasks can be dropped during a security event

• Minimize attack threat surface

[1] “RT-TEE: Real-time system availability for cyber-physical systems using ARM TrustZone”-S&P’22 19

Assumptions
• RTOSs are trustworthy[1]

• Security threats are exploited through Memory Corruption
• RTS are implemented with a Runtime defense technique
• Security event can be detected at or before the completion of attacked task
• Workload can be classified as security critical and non-critical

– ‘Security’ as a new dimension of criticality in MCS
– Less security-critical tasks can be dropped during a security event

• Minimize attack threat surface

• After the detection of security event, system goes through critical mode
– Take necessary actions to recover the system

[1] “RT-TEE: Real-time system availability for cyber-physical systems using ARM TrustZone”-S&P’22 20

Model
• Workloads [𝜏! = 𝜏", 𝜏#, … , 𝜏$, and 𝜏% = {𝐶%, 𝐷%, 𝑇%, ς%}]

– Security critical (𝜍% = 1) and non-critical (𝜍% = 0)
– A recovery task (𝜏& = {𝐶&, 𝑇&}) for each security-critical task
– Attacked task will get a full-execution by its deadline

21

Model
• Workloads [𝜏! = 𝜏", 𝜏#, … , 𝜏$, and 𝜏% = {𝐶%, 𝐷%, 𝑇%, ς%}]

– Security critical (𝜍% = 1) and non-critical (𝜍% = 0)
– A recovery task (𝜏& = {𝐶&, 𝑇&}) for each security-critical task
– Attacked task will get a full-execution by its deadline

• System
– Uniprocessor system
– Only one task can be attacked at a time instant

• Note: Any tasks can be under attack, however, one task can be exploited by
the attacker using code pointer

– Two operating system modes: regular and recovery mode
22

Scheduler

• Normal mode:
– Calculate virtual deadline (𝐷!" = 𝑥 𝐷!) for each security-critical task
– All security tasks are executed by their virtual deadline and non-

security tasks by their original deadline

23

𝑟! 𝑑!" 𝑑!

𝐷!" = 𝑥. 𝐷!

𝐷!

Scheduler
• Normal mode:

– Calculate virtual deadline (𝐷!" = 𝑥 𝐷!) for each security-critical task
– All security tasks are executed by their virtual deadline and non-

security tasks by their original deadline
• Recovery mode:

– All security-critical tasks (except targeted task) continue to receive
normal execution budget and meet their original deadline

– Targeted task receives full re-execution from mode-switch instant to its
original deadline

– Recovery task executes and meets deadline

24

Analysis
• Utilization-based test

– Normal Mode: 𝑈' +
(~"
)
≤ 1

• 𝑈# −utilization of security-critical tasks
• 𝑈~# −utilization of non-security-critical tasks
• 𝑥 −deadline shrinkage parameter

– Recovery Mode: 𝑥𝑈~' + 𝑈' + 𝑢+ + 𝑢& ≤ 1
• 𝑢$ −utilization of targeted task
• 𝑢% −utilization of recovery task

25

Performance Evaluation
• Baselines

– EDF
• Doubled the execution of security-critical tasks

– EDF-VD
• Model the workloads as MC workloads by doubling the

execution-time of security-critical tasks
– sEDF-VD (Ours)

26

Performance Evaluation

27

Performance Evaluation

28

Performance Evaluation

29

Performance Evaluation

30

Performance Evaluation

31

Performance Evaluation

32

~50%
improvement

Related Works (Defense Approaches)
• Intrusion Detection Systems

– Monitor security activity and potentially detect the security threat
• Do not prevent the threat

– Several Important works added additional security tasks, e.g.,
Contego[1]

• Scheduling Overhead—Need to schedule the security tasks along with
regular task

• Non-real time—detection of security event before compilation of attacked
task is not guaranteed

[1] “Contego: An adaptive framework for integrating security tasks in real-time systems.”-ECRTS’17
33

Conclusion
• Proposed a resilient real-time model that can protect

security-critical operations
• Developed efficient deadline-based scheduler for the

proposed model
• Presented utilization-based schedulability analysis for the

scheduler
• Future works: efficient analysis, and system implementation

34

