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Background—Real Time Systems (RTS)
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• Modern Design
– Heterogeneously  Platform
– Hierarchical implementation 

with real-time kernel 
• Often require to share 

memory/resource with non-real-
time processes

This Photo by Unknown Author is licensed under CC BY-SA

Fig: Heterogeneous Platform

https://www.electronics-lab.com/machine-learning-inference-embedded-applications-reference-design/
https://creativecommons.org/licenses/by-sa/3.0/


Background—Real Time Systems (RTS)

8

• Modern Design
– Heterogeneously  

implemented with non-real-
time components (due to 
SWaP-C constraint) 

– Hierarchical implementation 
with real-time kernel 

– Connectivity (e.g., CPS, IIoT)
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Fig: IoT
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Background—Security Threats
• Security concerns of RTS

– Modern RTSs are vulnerable to security threat
– Memory-based attacks, e.g., Control Flow Hijacking[1] and 

network-based attacks e.g., Mirai Botnet[2]

[1] “Control-flow integrity for real-time embedded systems”-ECRTS’19
[2] “Understanding the mirai botnet”-Usenix Security’17
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Background—Memory-based Attack 
(example – Buffer Overflow)
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Background—Defense
• Runtime Defense, e.g., CFI[1], DFI[2]

– Instrumented with real-time tasks
• No need to schedule separately
• Detect anomaly in real-time
• Prevent the threat by crashing/killing the attacked task

[1] “Control-flow integrity for real-time embedded systems”-ECRTS’19
[2] “RT-DFI: Optimizing data-flow integrity for real-time systems”-ECRTS’22 14



Problem
• Can we develop Security-Resilient RTS model implemented with a 

Runtime Defense without crashing a critical task under attack?

• This work: 
– A Resilient System Model
– Scheduler of the proposed model
– Analysis of the proposed scheduler
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Assumptions
• RTOSs are trustworthy[1]

[1] “RT-TEE: Real-time system availability for cyber-physical systems using ARM TrustZone”-S&P’22 16
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Assumptions
• RTOSs are trustworthy[1]

• Security threats are exploited through Memory Corruption
• RTS are implemented with a Runtime defense technique
• Security event can be detected at or before the completion of attacked task 
• Workload can be classified as security critical and non-critical

– ‘Security’ as a new dimension of criticality in MCS
– Less security-critical tasks can be dropped during a security event

• Minimize attack threat surface 

• After the detection of security event, system goes through critical mode
– Take necessary actions to recover the system

[1] “RT-TEE: Real-time system availability for cyber-physical systems using ARM TrustZone”-S&P’22 20



Model
• Workloads [𝜏! = 𝜏", 𝜏#, … , 𝜏$ , and 𝜏% = {𝐶%, 𝐷%, 𝑇%, ς%}]

– Security critical (𝜍% = 1) and non-critical (𝜍% = 0)
– A recovery task (𝜏& = {𝐶&, 𝑇&}) for each security-critical task
– Attacked task will get a full-execution by its deadline
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– Security critical (𝜍% = 1) and non-critical (𝜍% = 0)
– A recovery task (𝜏& = {𝐶&, 𝑇&}) for each security-critical task
– Attacked task will get a full-execution by its deadline

• System
– Uniprocessor system
– Only one task can be attacked at a time instant 

• Note: Any tasks can be under attack, however, one task can be exploited by 
the attacker using code pointer

– Two operating system modes: regular and recovery mode
22



Scheduler

• Normal mode:
– Calculate virtual deadline (𝐷!" = 𝑥 𝐷!) for each security-critical task
– All security tasks are executed by their virtual deadline and non-

security tasks by their original deadline
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Scheduler
• Normal mode:

– Calculate virtual deadline (𝐷!" = 𝑥 𝐷!) for each security-critical task
– All security tasks are executed by their virtual deadline and non-

security tasks by their original deadline
• Recovery mode:

– All security-critical tasks (except targeted task) continue to receive 
normal execution budget and meet their original deadline

– Targeted task receives full re-execution from mode-switch instant to its 
original deadline

– Recovery task executes and meets deadline 
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Analysis
• Utilization-based test

– Normal Mode: 𝑈' +
(~"
)
≤ 1

• 𝑈# −utilization of security-critical tasks
• 𝑈~# −utilization of non-security-critical tasks
• 𝑥 −deadline shrinkage parameter

– Recovery Mode: 𝑥𝑈~' + 𝑈' + 𝑢+ + 𝑢& ≤ 1
• 𝑢$ −utilization of targeted task
• 𝑢% −utilization of recovery task
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Performance Evaluation
• Baselines

– EDF
• Doubled the execution of security-critical tasks

– EDF-VD
• Model the workloads as MC workloads by doubling the 

execution-time of security-critical tasks
– sEDF-VD (Ours)
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Performance Evaluation
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~50% 
improvement



Related Works (Defense Approaches)
• Intrusion Detection Systems

– Monitor security activity and potentially detect the security threat
• Do not prevent the threat 

– Several Important works added additional security tasks, e.g., 
Contego[1]

• Scheduling Overhead—Need to schedule the security tasks along with 
regular task

• Non-real time—detection of security event before compilation of attacked 
task is not guaranteed 

[1] “Contego: An adaptive framework for integrating security tasks in real-time systems.”-ECRTS’17
33



Conclusion
• Proposed a resilient real-time model that can protect 

security-critical operations
• Developed efficient deadline-based scheduler for the 

proposed model
• Presented utilization-based schedulability analysis for the 

scheduler
• Future works: efficient analysis, and system implementation
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