NC STATE UNIVERSITY

A Secure Resilient Real-Time Recovery
Model, Scheduler, and Analysis

Abdullah Al Arafat!, Sudharsan Vaidhun2, Bryan C. Ward3 and Zhishan Guo'

1 Department of Computer Science, North Carolina State University
2 Department of Electrical and Computer Engineering, University of Central Florida
3 Department of Computer Science, Vanderbilt University

NC STATE UNIVERSITY

Outlines

« Background

* Problem and Assumptions
* Model

e Scheduler

* Analysis

« Experimental Results

« Conclusion

NC STATE UNIVERSITY

Background-Security (Embedded and
Connected systems)

This Photo by Unknown Author is licensed under CC BY-ND

Fig: Attack at Smart Vehicle

https://mgabol.blogspot.com/2011/08/war-texting-allows-hackers-to-unlock.html
https://creativecommons.org/licenses/by-nd/3.0/

NC STATE UNIVERSITY

Background-Security (Embedded and
Connected systems)

.....
,,,,,,,,,
VA

This Photo by Unknown Author is licensed under CC BY-ND

Flg. AttaCk at Smart Vehlcle (This Photo by is licensed under CC BY-NC-ND)
Fig: Attack through network

https://blogs.commons.georgetown.edu/cctp-820-fall2017/2017/11/15/some-thoughts-on-the-nature-of-the-internet/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://mgabol.blogspot.com/2011/08/war-texting-allows-hackers-to-unlock.html
https://creativecommons.org/licenses/by-nd/3.0/

NC STATE UNIVERSITY

Background-Security (Embedded and
Connected systems)

tomorrow
belongs to those who embrace it @ Q 8 S5
] today
|]
trending innovation home & office business finance education security
7
k

/ innovation

Microsoft: 70 percent of all security bugs
are memory safety issues

This Photo by Unknown Author is licensed under CC BY-ND

Flg. AttaCk at Smart Vehlcle (This Photo by is licensed under CC BY-NC-ND)
Fig: Attack through network

https://blogs.commons.georgetown.edu/cctp-820-fall2017/2017/11/15/some-thoughts-on-the-nature-of-the-internet/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://mgabol.blogspot.com/2011/08/war-texting-allows-hackers-to-unlock.html
https://creativecommons.org/licenses/by-nd/3.0/

NC STATE UNIVERSITY

Background-Security (Embedded and
Connected systems)

tomorrow
I belongs to those who embrace it @ Q 8 8 B
% today
T trending innovation home & office business finance education security
g
L

tomorrow
i belongs to those who embrace it °
I Inn(Z D t;dg;gs 0 those who embrace i @ Q Q
N E I rendne inovation EEHOECEED business finance education security

/ innovation

Chrome: 70 percent of all security bugs
are memory safety issues

FIg: ATtack through network

This Photo

Fig

https://blogs.commons.georgetown.edu/cctp-820-fall2017/2017/11/15/some-thoughts-on-the-nature-of-the-internet/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://mgabol.blogspot.com/2011/08/war-texting-allows-hackers-to-unlock.html
https://creativecommons.org/licenses/by-nd/3.0/

NC STATE UNIVERSITY

Background—Real Time Systems (RTS)

* Modern Design
— Heterogeneously Platform

— Hierarchical implementation
with real-time kernel

» Often require to share
memory/resource with non-real-
time processes

This Photo by Unknown Author is licensed under CC BY-SA

Fig: Heterogeneous Platform 7

https://www.electronics-lab.com/machine-learning-inference-embedded-applications-reference-design/
https://creativecommons.org/licenses/by-sa/3.0/

NC STATE UNIVERSITY

Background—Real Time Systems (RTS)

* Modern Design

— Heterogeneously
implemented with non-real-
time components (due to
SWaP-C constraint)

— Hierarchical implementation
with real-time kernel

— Connectivity (e.g., CPS, lloT)

This Photo by Unknown Author is licensed under CC BY-SA-NC

Fig: loT

https://aprendiendoarduino.wordpress.com/tag/proyectos-iot/
https://creativecommons.org/licenses/by-nc-sa/3.0/

NC STATE UNIVERSITY

Background—Security Threats

« Security concerns of RTS
— Modern RTSs are vulnerable to security threat

— Memory-based attacks, e.g., Control Flow Hijacking!'!l and
network-based attacks e.g., Mirai Botnet?]

[1] “Control-flow integrity for real-time embedded systems™ECRTS’19
[2] “Understanding the mirai botnet’-Usenix Security’17

NC STATE UNIVERSITY

Background—Memory-based Attack
(example — Buffer Overflow)

Virtual address space Virtual address space Virtual address space
OxFFFF... Main's Main's Main's
local Stack local local
variables variables variables |—|
Stack —
pointer Return addr s Return addr [seh
A's local A'slocal gy
variables variables {Bf
SP — SP — =~
Buffer B
Program Program Program

(@) (b) (©)

This Photo by Unknown Author is licensed under CC BY-SA

10

http://security.stackexchange.com/questions/135786/if-the-stack-grows-downwards-how-can-a-buffer-overflow-overwrite-content-above
https://creativecommons.org/licenses/by-sa/3.0/

NC STATE UNIVERSITY

Background—Memory-based Attack
(example — Buffer Overflow)

Virtual address space

OxFFFF... Main's
local
variables
Stack —
pointer
Program

(@)

Virtual address space

} Stack

Main's
local
variables

A's local
variables

SP —

Program

(b)

This Photo by Unknown Author is licensed under CC BY-SA

Virtual address space

Main's

local
variables | |

Return addr [seh

SP —

A's local e
variables :@:

R

Program

()

http://security.stackexchange.com/questions/135786/if-the-stack-grows-downwards-how-can-a-buffer-overflow-overwrite-content-above
https://creativecommons.org/licenses/by-sa/3.0/

NC STATE UNIVERSITY

Background—Memory-based Attack
(example — Buffer Overflow)

Virtual address space

OxFFFF... Main's
local
variables
Stack —
pointer
Program

(@)

Virtual address space

} Stack

Main's
local
variables

A's local
variables

SP —

Program

(b)

This Photo by Unknown Author is licensed under CC BY-SA

Virtual address space

Main's
local
variables

IL|

Return add [s=h

SP —

A's local
variables

Program

()

http://security.stackexchange.com/questions/135786/if-the-stack-grows-downwards-how-can-a-buffer-overflow-overwrite-content-above
https://creativecommons.org/licenses/by-sa/3.0/

NC STATE UNIVERSITY

Background—Memory-based Attack

(example — Buffer Overflow)

Virtual address space

OxFFFF... Main's
local
variables
Stack —
pointer
Program

(@)

Virtual address space

} Stack

SP —

Main's
local
variables

A's local
variables

Program

(b)

This Photo by Unknown Author is licensed under CC BY-SA

Virtual address space

SP —

Main's
local
variables

A's local
variables

a

Program

()

13

http://security.stackexchange.com/questions/135786/if-the-stack-grows-downwards-how-can-a-buffer-overflow-overwrite-content-above
https://creativecommons.org/licenses/by-sa/3.0/

NC STATE UNIVERSITY

Background—Defense

« Runtime Defense, e.g., CFIl'l, DFI

— Instrumented with real-time tasks
* No need to schedule separately
« Detect anomaly in real-time
* Prevent the threat by crashing/killing the attacked task

[1] “Control-flow integrity for real-time embedded systems”-ECRTS’19

[2] “RT-DFI: Optimizing data-flow integrity for real-time systems”™-ECRTS’22 14

NC STATE UNIVERSITY

Problem

« Can we develop Security-Resilient RTS model implemented with a
Runtime Defense without crashing a critical task under attack?

* This work:
— A Resilient System Model
— Scheduler of the proposed model
— Analysis of the proposed scheduler

15

NC STATE UNIVERSITY

Assumptions

 RTOSs are trustworthyl!'l

[1] “RT-TEE: Real-time system availability for cyber-physical systems using ARM TrustZone”-S&P’22 16

NC STATE UNIVERSITY

Assumptions

« RTOSs are trustworthyt"
« Security threats are exploited through Memory Corruption

[1] “RT-TEE: Real-time system availability for cyber-physical systems using ARM TrustZone”-S&P’22 17

NC STATE UNIVERSITY

Assumptions

« RTOSs are trustworthyt"

« Security threats are exploited through Memory Corruption

 RTS are implemented with a Runtime defense technique

« Security event can be detected at or before the completion of attacked task

[1] “RT-TEE: Real-time system availability for cyber-physical systems using ARM TrustZone”-S&P’22 18

NC STATE UNIVERSITY

Assumptions

« RTOSs are trustworthyt"
« Security threats are exploited through Memory Corruption
 RTS are implemented with a Runtime defense technique
» Security event can be detected at or before the completion of attacked task
« Workload can be classified as security critical and non-critical
— ‘Security’ as a new dimension of criticality in MCS

— Less security-critical tasks can be dropped during a security event
* Minimize attack threat surface

[1] “RT-TEE: Real-time system availability for cyber-physical systems using ARM TrustZone”-S&P’22 19

NC STATE UNIVERSITY

Assumptions

« RTOSs are trustworthyt"
« Security threats are exploited through Memory Corruption
 RTS are implemented with a Runtime defense technique
» Security event can be detected at or before the completion of attacked task
« Workload can be classified as security critical and non-critical
— ‘Security’ as a new dimension of criticality in MCS

— Less security-critical tasks can be dropped during a security event
* Minimize attack threat surface

After the detection of security event, system goes through critical mode
— Take necessary actions to recover the system

[1] “RT-TEE: Real-time system availability for cyber-physical systems using ARM TrustZone”-S&P’22 20

NC STATE UNIVERSITY

Model

« Workloads [t' = {14, 1,, ..., T}, @and t; = {C;, D;, T;, ¢;}]
— Security critical (¢; = 1) and non-critical (¢; = 0)
— Arecovery task (tp = {Cy, Tr}) for each security-critical task
— Attacked task will get a full-execution by its deadline

21

NC STATE UNIVERSITY

Model

« Workloads [t' = {14, 1,, ..., T}, @and t; = {C;, D;, T;, ¢;}]
— Security critical (¢; = 1) and non-critical (¢; = 0)
— Arecovery task (tp = {Cy, Tr}) for each security-critical task
— Attacked task will get a full-execution by its deadline
« System
— Uniprocessor system

— Only one task can be attacked at a time instant

* Note: Any tasks can be under attack, however, one task can be exploited by
the attacker using code pointer

— Two operating system modes: regular and recovery mode
22

NC STATE UNIVERSITY

Scheduler

 Normal mode:
— Calculate virtual deadline (D/ = x D;) for each security-critical task

— All security tasks are executed by their virtual deadline and non-
security tasks by their original deadline

23

Scheduler

« Normal mode:

— Calculate virtual deadline (D;” = x D;) for each security-critical task

— All security tasks are executed by their virtual deadline and non-
security tasks by their original deadline

 Recovery mode:

— All security-critical tasks (except targeted task) continue to receive
normal execution budget and meet their original deadline

— Targeted task receives full re-execution from mode-switch instant to its
original deadline

— Recovery task executes and meets deadline

24

NC STATE UNIVERSITY

Analysis

e Utilization-based test

U~
— Normal Mode: U, + TC <1
* U, —utilization of security-critical tasks
« U.. —utilization of non-security-critical tasks
» x —deadline shrinkage parameter
— Recovery Mode: xU._.. +U.+u; +ug <1

» u; —utilization of targeted task
* ug —utilization of recovery task

25

NC STATE UNIVERSITY

Performance Evaluation

« Baselines
— EDF

» Doubled the execution of security-critical tasks
— EDF-VD

* Model the workloads as MC workloads by doubling the
execution-time of security-critical tasks

— seEDF-VD (Ours)

26

NC STATE UNIVERSITY

Performance Evaluation

100 A p—t—t—t—t et =t ik
. NN X,
|‘ . - . *\\x§:\..‘.. ~\ % .\
] N ‘\‘ *\ ... +‘\ ‘I' \
xe 80 Algorithm P V‘\\ \. N o)
9 —— EDF[15] VoL Y e A\
Jé |\ ‘\ '.‘ r_r_}\ ." \ e
~ 604 — EDF-VD 3] Voo \~¢+;\ o " \x‘
o —— SEDF-VD oNy O\ e \.’ \
q Y +v . \, \E % \‘
£ 407 ur \ AT WY \. o K
3 —o— 0.1 \ . VR e \ \
S : N W\ % o
< -%- 0.2 \ Nk TAN\TA S E X
201 \ AR A A \
- (.3 + R VS o Ny B,
\0\ ‘o. \+. +N~+\+\ .
- - u. [o
0- - 0.5 +-.+__+_ g “_a'c___+_+>+_ =+
1 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Utilization of tasks in normal mode U

27

NC STATE UNIVERSITY

Performance Evaluation

100 e e et N e E=Xr@g
R S:h\\ §o\ X =X, N ~e
\‘+ .\X o e . X\ \
. o 3 “ ‘\ T +\ ‘I‘ .
xe 80 Algorithm Y V‘\\ \. N
9 — EDF[15] vy Y e AN
Jé \ \ "‘ r'.'}\ '.‘ \\ ®
~ 604 — EDF-VD3] R N R °" X
g —— sEDF-VD Ny O\ e .\
o + 4
= \ .5 .\
B, 401 e \ XN \
8 —— 0.1 iy g, \\+* . \
I [L e \ N
201 . A W Nk R '\ "m0 \
=4 (.3 + ", x \~ \ \ x .
- S “m. N +¢.+ ~+\-
0 - *05 g S ke S
1 T T T T T
0.0 (.4 0.6 0.8 1.0
Utilization of tasks in normal mode U

28

NC STATE UNIVERSITY

Performance Evaluation

100 - + I—Xi—.\.
0‘\ §+\\ §.\ X =X, ®
“ *, \x ° ® " x \
e L W ‘n \
- Algorithm N \ \ e
XX + "‘.‘ " \ .".‘ x
e EDF [15] Vo Y e (AN
= EDF-VD [3 LU T, X KR |
o - [] ‘\‘ +\‘ .“ AN N o - X‘
8 sEDF-VD N \\ Vot ‘- \
g +, \m
N UR L RONI \
E 40 T g \ .t_'_ AN
g —— 0.1 iy G\ ke
S p R\ \.
<ﬁ 20 . _'- 0.2 \‘ o.‘ \:F \~ .'
—_— . \ (R R '\ “m,
- (.3 Y ", xS (\ \ . .
- S “u. N +¢.+ ~+\-
0 - *- 05 R PR R P 3+
1 T T T T T
0.0 (.4 (.6 0.8 1.0
Utilization of tasks in normal mode U

29

NC STATE UNIVERSITY

Performance Evaluation

100 A SRR §;—’“—§~o o
\H \\" N, x \
Y u 3 *
- Algorithm A WY ' \'-‘ \\)
= % LN 0. X
e EDF [15] Vo Ve (A
Jé \ \ "‘ !‘.‘_ N\ '.‘ \\ ®
o EDF-VD [3] N R o %
[} L) E " A
g sEDF-VD o NE Y T \., \ \
j=} g & . A~
g \ N % ‘.'\
E \ .t+ AN}
L " we +\. ‘
8) 0 + \ N \v
<ﬁ ‘n ." ~$‘., \\n CHl
S \ u NECRON ‘m,, \
® RN PN,
0\+~ . \x +\“+ .+_

o P o e S et E+

0.4 0.6 0.8 1.0
ﬁﬁilization of tasks in normal mode U

30

NC STATE UNIVERSITY

Performance Evaluation

1
100 - e e e e e o %‘g L] if..)'“—_‘s.
N *, :h\\ §:\.'.‘ x‘\ \}
\‘ \‘ -'.\)f e ., X\
Algorithm \ "%\ -8 l
» ‘O » . “
EDF [15] SR i, @ _ I\ \
vov oy X o
EDF-VD [3] ; 3
sEDF-VD

[Acceptance Ratio %

", %,V \ (] e X
N N] N T '.)\.
‘.. Y Y
+~'+-.+-.+..:+.'u. RS 1

0.4 0.6 0.8 1.0
ﬁﬁilization of tasks in normal mode U

31

NC STATE UNIVERSITY

Performance Evaluation

[Acceptance Ratio %

RIS e
N t\\x§:\: \x\ —
LU ‘m N\ % .
Algorithm LV S » \\' \\l 2
AN MR i 50%
EDF [15] Vo Y ’ : 0
Voo N b
EDF-VD [3] ok Improvement
sEDF-VD NN
\ +v‘ 0y
| N X
\ LN
\ e
I‘ ‘.'
+ N D)
RN T R o
o e o o A o e N e
T T T T T
0.4 0.6 0.8 1.0

&

ilization of tasks in normal mode U

32

Related Works (Defense Approaches)

 Intrusion Detection Systems

— Monitor security activity and potentially detect the security threat
* Do not prevent the threat

— Several Important works added additional security tasks, e.g.,
Contegol”!

« Scheduling Overhead—Need to schedule the security tasks along with
regular task

« Non-real time—detection of security event before compilation of attacked
task is not guaranteed

[1] “Contego: An adaptive framework for integrating security tasks in real-time systems.”-ECRTS’17
33

NC STATE UNIVERSITY

Conclusion

* Proposed a resilient real-time model that can protect
security-critical operations

« Developed efficient deadline-based scheduler for the
proposed model

* Presented utilization-based schedulability analysis for the
scheduler

» Future works: efficient analysis, and system implementation

34

