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Background—Real Time Systems (RTS)

* Modern Design
— Heterogeneously Platform

— Hierarchical implementation
with real-time kernel

» Often require to share
memory/resource with non-real-
time processes

This Photo by Unknown Author is licensed under CC BY-SA

Fig: Heterogeneous Platform 7
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Background—Real Time Systems (RTS)

* Modern Design

— Heterogeneously
implemented with non-real-
time components (due to
SWaP-C constraint)

— Hierarchical implementation
with real-time kernel

— Connectivity (e.g., CPS, lloT)
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Fig: loT
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Background—Security Threats

« Security concerns of RTS
— Modern RTSs are vulnerable to security threat

— Memory-based attacks, e.g., Control Flow Hijacking!'!l and
network-based attacks e.g., Mirai Botnet?]

[1] “Control-flow integrity for real-time embedded systems™ECRTS’19
[2] “Understanding the mirai botnet’-Usenix Security’17
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Background—Memory-based Attack
(example — Buffer Overflow)
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Background—Defense

« Runtime Defense, e.g., CFIl'l, DFI

— Instrumented with real-time tasks
* No need to schedule separately
« Detect anomaly in real-time
* Prevent the threat by crashing/killing the attacked task

[1] “Control-flow integrity for real-time embedded systems”-ECRTS’19

[2] “RT-DFI: Optimizing data-flow integrity for real-time systems”™-ECRTS’22 14
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Problem

« Can we develop Security-Resilient RTS model implemented with a
Runtime Defense without crashing a critical task under attack?

* This work:
— A Resilient System Model
— Scheduler of the proposed model
— Analysis of the proposed scheduler

15
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Assumptions

 RTOSs are trustworthyl!'l

[1] “RT-TEE: Real-time system availability for cyber-physical systems using ARM TrustZone”-S&P’22 16
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Assumptions

« RTOSs are trustworthyt"

« Security threats are exploited through Memory Corruption

 RTS are implemented with a Runtime defense technique

« Security event can be detected at or before the completion of attacked task

[1] “RT-TEE: Real-time system availability for cyber-physical systems using ARM TrustZone”-S&P’22 18
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Assumptions

« RTOSs are trustworthyt"
« Security threats are exploited through Memory Corruption
 RTS are implemented with a Runtime defense technique
» Security event can be detected at or before the completion of attacked task
« Workload can be classified as security critical and non-critical
— ‘Security’ as a new dimension of criticality in MCS

— Less security-critical tasks can be dropped during a security event
* Minimize attack threat surface
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Assumptions

« RTOSs are trustworthyt"
« Security threats are exploited through Memory Corruption
 RTS are implemented with a Runtime defense technique
» Security event can be detected at or before the completion of attacked task
« Workload can be classified as security critical and non-critical
— ‘Security’ as a new dimension of criticality in MCS

— Less security-critical tasks can be dropped during a security event
* Minimize attack threat surface

After the detection of security event, system goes through critical mode
— Take necessary actions to recover the system

[1] “RT-TEE: Real-time system availability for cyber-physical systems using ARM TrustZone”-S&P’22 20
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Model

« Workloads [t' = {14, 1,, ..., T}, @and t; = {C;, D;, T;, ¢;}]
— Security critical (¢; = 1) and non-critical (¢; = 0)
— Arecovery task (tp = {Cy, Tr}) for each security-critical task
— Attacked task will get a full-execution by its deadline

21
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Model

« Workloads [t' = {14, 1,, ..., T}, @and t; = {C;, D;, T;, ¢;}]
— Security critical (¢; = 1) and non-critical (¢; = 0)
— Arecovery task (tp = {Cy, Tr}) for each security-critical task
— Attacked task will get a full-execution by its deadline
« System
— Uniprocessor system

— Only one task can be attacked at a time instant

* Note: Any tasks can be under attack, however, one task can be exploited by
the attacker using code pointer

— Two operating system modes: regular and recovery mode
22
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Scheduler

 Normal mode:
— Calculate virtual deadline (D/ = x D;) for each security-critical task

— All security tasks are executed by their virtual deadline and non-
security tasks by their original deadline

23



Scheduler

« Normal mode:

— Calculate virtual deadline (D;” = x D;) for each security-critical task

— All security tasks are executed by their virtual deadline and non-
security tasks by their original deadline

 Recovery mode:

— All security-critical tasks (except targeted task) continue to receive
normal execution budget and meet their original deadline

— Targeted task receives full re-execution from mode-switch instant to its
original deadline

— Recovery task executes and meets deadline

24
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Analysis

e Utilization-based test

U~
— Normal Mode: U, + TC <1
* U, —utilization of security-critical tasks
« U.. —utilization of non-security-critical tasks
» x —deadline shrinkage parameter
— Recovery Mode: xU._.. +U.+u; +ug <1

» u; —utilization of targeted task
* ug —utilization of recovery task

25
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Performance Evaluation

« Baselines
— EDF

» Doubled the execution of security-critical tasks
— EDF-VD

* Model the workloads as MC workloads by doubling the
execution-time of security-critical tasks

— seEDF-VD (Ours)

26
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Performance Evaluation
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Performance Evaluation
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Performance Evaluation
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Performance Evaluation
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Performance Evaluation
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Performance Evaluation
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Related Works (Defense Approaches)

 Intrusion Detection Systems

— Monitor security activity and potentially detect the security threat
* Do not prevent the threat

— Several Important works added additional security tasks, e.g.,
Contegol”!

« Scheduling Overhead—Need to schedule the security tasks along with
regular task

« Non-real time—detection of security event before compilation of attacked
task is not guaranteed

[1] “Contego: An adaptive framework for integrating security tasks in real-time systems.”-ECRTS’17
33
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Conclusion

* Proposed a resilient real-time model that can protect
security-critical operations

« Developed efficient deadline-based scheduler for the
proposed model

* Presented utilization-based schedulability analysis for the
scheduler

» Future works: efficient analysis, and system implementation

34



