
WMC 2022

Proceedings of the 9th International Workshop on Mixed
Criticality Systems

jointly hold with RTSS 2022, Houston (Hybrid)

Edited by

Xiaotian Dai and Zheng Dong

December 2022

Organizers

Program Co-chairs

Zheng Dong, Wayne State University
Xiaotian Dai, University of York

Steering Committee

Iain Bate, University of York
Arvind Easwaran, Nanyang Technological University
Zhishan Guo, North Carolina State University
Jing Li, New Jersey Institute of Technology

Program Committee Member

Nan Guan, City University of Hong Kong
Geoffrey Nelissen, Tu Eindhoven
Daniel Casini, Scuola Superiore Sant’anna - Pisa
Lea Schönberger (Publicity Chair), Tu Dortmund University
Kecheng Yang, Texas State University
Konstantinos Bletsas, Cister
Mohamed Hassan, Mcmaster University
Renato Mancuso, Boston University
Yasmina Abdeddaim, Université Gustave Eiffel, Esiee Paris
Bryan C. Ward, Vanderbilt University
Jinghao Sun, Dalian University of Technology
Jinkyu Lee, Sungkyunkwan University
Nathan Fisher, Wayne State University
Shuai Zhao, Sun Yat-sen University
Corey Tessler, University of Nevada, Las Vegas
Zhe Jiang, University of Cambridge
Georg von der Brüggen, Tu Dortmund, Germany

1

Message from the Program Chairs

It is our pleasure to welcome you to the 9th International Workshop on Mixed
Criticality Systems (WMC) at the Real-Time Systems Symposium (RTSS) in
Houston, USA on 5th Dec 2022.

The purpose of WMC is to share new ideas, experiences, and information
about research and development of mixed-criticality real-time systems. The
workshop aims to bring together researchers working in fields relating to real-
time systems with a focus on the challenges brought about by the integration of
mixed-criticality applications onto single-core, multi-core, and many-core archi-
tectures. These challenges are cross-cutting. To advance rapidly, closer interac-
tion is needed between the sub-communities involved in real-time operating sys-
tems / run-time environments/hypervisor, real-time scheduling, security, safety,
and timing analysis. The workshop aims to promote an understanding of the
fundamental problems that affect Mixed Criticality Systems (MCS) at all levels
in the software/hardware stack and crucially the interfaces between them. The
workshop will promote lively interaction, cross-fertilization of ideas, synergies,
and closer collaboration across the breadth of the real-time community, as well
as attract industrialists from the aerospace, automotive, and other industries
with a specific interest in MCS.

For this ninth edition of the workshop, 8 submissions were received. The
review process involved 17 Program Committee members, with each submission
receiving at least 4 reviews. We decided to accept all submissions (one paper
was accepted with shepherding.) for presentation at the workshop, including
5 regular unpublished papers and 3 Journal-Never-Presented papers. We sin-
cerely thank all the Program Committee members for their time and effort in
the review process. As well as regular paper presentations, there is a keynote
session on “Probabilistic Real-Time Scheduling and its Possible Link to Mixed-
Criticality Systems”, given by Dr. Jian-jia Chen (TU Dortmund, Germany).

WMC 2022 would not be possible without the hard work of people involved in
organizing RTSS 2022, including Drs. Liliana Cucu-Grosjean, Arvind Easwaran,
Sebastian Altmeyer and Christopher Gill. In particular, we would like to thank
the RTSS 2022 Hot-Topics Day chair Dr. Dionisio de Niz for his excellent
organization and great support of the overall workshops program. We also
thank the WMC Steering Committee for their guidance and suggestions during
the preparation of WMC 2022.

Finally, we would like to thank all of the authors who submitted their work
to WMC 2022 and the keynote speaker. We wish you an interesting and exciting
workshop and an enjoyable stay in Houston.

Zheng Dong (Wayne State University, USA),
Xiaotian Dai (University of York, UK),
WMC 2022 Program Co-Chairs

2

Technical Program

Probabilistic Real-Time Scheduling and its Possible Link to Mixed-
Criticality Systems . 3

Mixed-Criticality Scheduling for Parallel Real-Time Tasks with Re-
source Reclamation . 8

A Secure Resilient Real-Time Recovery Model, Scheduler, and Analysis 13
Mixed-Criticality Wireless Communication for Robot Swarms 19
Precise Scheduling Mixed-Criticality Gang Tasks with Reserved Pro-

cessors . 25
A High-Resilience Imprecise Computing Architecture for Mixed-Criticality

Systems . 31
Computing the Execution Probability of Jobs with Replication in Mixed-

Criticality Schedules . 35
Bridging the Pragmatic Gaps for Mixed-Criticality Systems in the Au-

tomotive Industry . 39

3

Probabilistic Real-Time Scheduling and its
Possible Link to Mixed-Criticality Systems

Georg von der Brüggen∗, Sergey Bozhko†, Mario Günzel∗,
Kuan-Hsun Chen§, Jian-Jia Chen∗, and Björn B. Brandenburg†

∗TU Dortmund University, Germany
†Max Planck Institute for Software Systems (MPI-SWS), Germany

§University of Twente, The Netherlands

Abstract—Proving hard real-time guarantees based on a clas-
sical analysis may significantly underutilize the processor in the
average case. Therefore, instead of considering a very rare worst-
case scenario, a probabilistic scheduling analysis determines the
probability of a deadline miss. Such an analysis assumes that task
execution times are given by a set of modes representing the range
of possible execution scenarios. Considering tasks with multiple
modes and different levels of assurances, in this case expressed
as different probabilities to miss deadlines, for different tasks
provides a natural link to mixed-criticality systems.

This work summarizes recent results in probabilistic real-time
scheduling and some potential problems that should be consid-
ered when linking these results to mixed-criticality systems. In
addition, possible connections between mixed-criticality systems
and probabilistic analysis are detailed. The goal of this work is to
start a discussion to determine whether such probabilistic results
may be interesting for mixed-criticality research.

I. INTRODUCTION

A classical, deterministic scheduling analysis for hard real-
time systems examines the question whether, given a set of
(recurrent) tasks, all task instances meet their deadline in all
circumstances. These analyses assume that jobs are always
executed according to their WCET. Proving timing guarantees
under these pessimistic assumptions may significantly under-
utilize the processor in the average case.

Considering this dilemma, the mixed-criticality approach
proposed by Vestal [13] in 2007 has started an active re-
search field within the real-time systems community (the
latest version of the survey by Burns and Davis [3] lists
660 related papers). In a mixed-criticality system, tasks have
multiple execution modes with different related execution-time
budgets. For instance, a dual-criticality system can be in high-
criticality or low-criticality mode and is comprised of two
kinds of tasks, high-criticality and low-criticality tasks. At
system start, the system is in low-criticality mode and timing
guarantees are provided for all tasks in the system. If one of
the high-criticality tasks overshoots its execution time budget,
the system switches to the high-criticality mode, where the
execution time budget of high-criticality tasks is increased
while no guarantees are provided for low-criticality tasks.

This mixed-criticality model, in its most basic form, has
received considerable criticism [10], [9], [14] since low-
criticality tasks are abandoned once the system switched to
high-criticality mode and no return to low-criticality mode was

considered. This resulted in research into more realistic mixed-
criticality models and graceful degradation of the service of
low-criticality tasks. Please see Section 6 in the survey by
Burns and Davis [3] for details.

As a result, mixed-criticality research more frequently con-
sidered systems where tasks may switch their execution be-
havior frequently instead of assuming a single mode switch. In
such a scenario, it seems natural to consider situations where
only a small subset of tasks exhibits larger execution times
for a limited time interval. Hence, performing a system mode
switch may be both costly and unnecessary. Furthermore, in
2020, an empirical survey by Akesson et al. [1] revealed that
62% of the responding real-time practioners work on systems
that include soft or firm real-time tasks and for 45% of the
systems even the most critical functions can endure occasional
deadline misses. Hence, an alternative approach to provide
guarantees in mixed-criticality systems may be to determine
how large the probability for a deadline miss actually is if
intervals in which larger execution times occur are short or
larger execution times are rare and to adjust runtime measures
accordingly. For example, a system mode switch might only
be performed if the probability that a deadline miss occurs in
a critical function exceeds a certain threshold.

The risk of deadline misses can be quantified in a prob-
abilistic schedulability analysis, usually considering either
the deadline miss rate (that is, the percentage of deadline
misses in the long run) or the worst-case deadline failure
probability (WCDFP) (i.e., an upper bound on the probability
of the first deadline miss in a busy window). A survey on
probabilistic schedulability in real-time systems community
has been provided by Davis and Cucu-Grosjean in 2019 [8].
We provide a summary on recent work in the area, point
out open research questions, and possible links to mixed-
criticality systems1. Our goal is to determine whether such
probabilistic results are potentially interesting for the mixed-
criticality research community.

1This submission is an extension of the one presented at the 15th Workshop
on Models and Algorithms for Planning and Scheduling (MAPSP) 2022,
which only focused on probabilistic scheduling but did not consider mixed-
criticality systems. The version submitted to MAPSP can be found at
https://mapsp2022.polito.it/Proceedings.pdf, page 143-145.

II. PROBABILISTIC ANALYSIS: BASICS AND PROBLEMS

We assume that a task’s execution time is described as a set
of possible modes, each defined by a pair of (i) its maximum
execution time in that mode and (ii) the related probability,
e.g., Ci

Pi
=

(
3
0.9

5
0.1

)
means that τi has an execution time of

at most 3 with probability 0.9 and an execution time 5 with
probability 0.1.

Assuming a given release pattern, the probability that jobs
miss their deadline under a given scheduling algorithm can be
calculated via job-level convolution. Figure 1 shows an exam-
ple of job-level convolution under static-priority scheduling.

The example considers 3 jobs, 2 of the higher-priority
task τ1 and 1 of task τ2. The goal is to determine the
probability that the job of τ2 misses its deadline. We start in
an initial state where the execution time is 0 with probability
1, that is, no job has yet been executed. Jobs are convolved
one by one with the current states by summing up the ETs
while multiplying the probabilities. This iteratively calculates
the probability that the job of τ2 meets its deadline at t = 8
or at t = 14, since all possible job-cost combinations are
considered.

However, one of the main problems in probabilistic analysis
can also be observed in Figure 1, namely, that the number of
states can be exponential in the number of jobs for a job-level
convolution. Therefore, it can only directly be applied if, on
the one hand, the number of jobs that must be considered is
small and, on the other hand, the number of release patterns
that must be considered is small as well. Otherwise, the
computational complexity is too high to be feasible in practice.
As a result, two important research questions are:

1) How can the number of release patterns that have to be
examined be reduced?

2) How can the deadline miss probability for one of these
scenarios be determined efficiently?

Especially in the context of mixed-criticality systems, these
calculations must also be applicable when the execution times
of jobs are not independent due to a mode switch.

In the following, we give a brief overview on the progress
on these fundamental research questions.

III. EFFICIENT APPROXIMATION OF MISS PROBABILITIES

One approach to speed up the calculation using job-
level convolution is reducing the number of states by re-
sampling [12]. Specifically, states are combined to reduce the
number of states as soon as the number of states exceeds
a configurable threshold. However, re-sampling also reduces
the precision of the calculation in a way that, in a non-
trivial manner, depends on the concrete re-sampling scheme.
Markovic et al. [11] introduced optimal re-sampling schemes
that minimize the precision loss. However, bounding the loss
remains an open problem. Markovic et al. [11] also detailed
how cyclic convolution can be used instead of direct convolu-
tion to improve the calculation efficiency.

Instead of considering all possible job-cost combinations at
the same time, the Monte-Carlo Response Time Analysis by

Bozhko et al. [2] analyzes job traces individually. In each iter-
ation, one specific trace (for instance, the one indicated with
brown arrows in Figure 1) is sampled. Specifically, in each
iteration, jobs are considered one by one, each time drawing
one of the possible execution times according to the related
probabilities. To estimate the deadline failure probability for
the job under analysis, the number of observed deadline misses
is counted and divided by the number of iterations, and then
combined with an estimate of the confidence interval at a
configurable level of assurance. The Monte-Carlo Response
Time Analysis is scalable to scenarios with a very large
number of jobs and is easily parallelizable. It allows to provide
estimates with a known precision interval, but may require an
infeasible number of samples when this interval must be too
small.

Another approach is to not consider the jobs in order of
arrival but to instead evaluate all relevant intervals individually.
For instance, for the example in Figure 1, first the deadline
failure probability for the interval [0,8] and then for the
interval [0,14] would be calculated. The main idea of this
approach is to make up for always starting from scratch by
speeding up the calculation for each interval. The task-level
convolution by von der Brüggen et al. [15] utilizes the fact
that, when a specific interval is considered, the workload
contributed by a specific task only depends on the number
of jobs in a specific mode, but not on their specific order.

Analytic bounds estimate the probability for each interval
individually as well. They, however, do not consider individual
job modes to determine the workload the jobs contributes.
Instead, the probability that the workload in a given interval is
larger than the interval length is estimated directly, using ana-
lytic bounds. The most prominent approach is the line of work
from Chen et al. [6], [4] utilizing Chernoff Bounds. While
results exploiting Hoeffding’s or Bernstein inequalities [15] are
preferable regarding runtime, Chernoff Bounds usually provide
a better tradeoff between runtime and precision. However,
Chernoff Bounds do not provide any precision guarantees.

IV. DETERMINING A WORST-CASE RELEASE PATTERNS

Similar to the idea of the classical critical instant, one
approach to reduce the analysis complexity is to determine
a certain scenario that always provides the worst case or an
upper bound on the deadline miss probability.

When considering the worst-case deadline failure prob-
ability under static-priority scheduling, Maxim and Cucu-
Grosjean [12] proposed such a scenario in 2013, and Chen and
Chen [4] provided an alternate proof in 2017. Unfortunately,
the depicted scenario, which is identical to the classical critical
instant, has been contradicted with a counterexample by Chen
et al. [5] in 2022. Chen et al. [5] also provided two over-
approximations for the worst-case release pattern, which can
be utilized to over-approximate the worst-case deadline failure
probability. The question whether there is one specific release
pattern that always results in a worst-case workload for any
interval under static-priority scheduling remains open.

D1 = T1 = 8

τ1
C1
P1 =

(
3
0.9

5
0.1

)

D2 = T2 = 14

τ2
C2
P2 =

(
5
0.8

6
0.2

)

(
3
0.9

5
0.1

) (
5
0.8

6
0.2

) (
3
0.9

5
0.1

)

(
0
1

)

(
3
0.9

)

(
5
0.1

)

(
8

0.72

)

(
9

0.18

)

(
10
0.08

)

(
11
0.02

)

(
11

0.648

)

(
13

0.072

)

(
12

0.162

)

(
14

0.018

)

(
13

0.072

)

(
15

0.008

)

(
14

0.018

)

(
16

0.002

)

(
13

0.144

)

(
14

0.036

)

t = 0 t = 8 t = 14

Legend: Task Related Job Release Release Time

First Execution Mode Second Execution Mode

Considered Time Deadline Misses

State Merging

Specific Trace

Fig. 1. A convolution example for two tasks under rate-monotonic scheduling.

Fortunately, the results discussed in the previous section are
still applicable, as they provide efficient calculation methods
for a given release pattern, but do not utilize any specific
property of the critical instant.

For earliest-deadline first scheduling, von der Brüggen et
al. [16] showed a worst-case scenario that upper-bounds the
worst-case deadline failure probability in 2021.

No approach that can analytically bound the deadline miss
rate is known under either static-priority scheduling or earliest-
deadline first scheduling, as the result by Chen et al. [7] for
static-priority scheduling is not applicable anymore due to the
recently provided counterexample [5].

V. JOB DEPENDENCIES

The previously discussed worst-case scenarios and calcula-
tion methods assume that the probabilities for job execution
times are probabilistically independent. Therefore, applying
them to mixed-criticality systems, where all, or at least some,
tasks jointly switch into high-criticality mode is not straight
forward. Nevertheless, von der Brüggen et al. [16] provided
an over-approximation that, under earliest deadline first, en-
ables dependencies in an restricted scenario. Specifically, they
assumed that the dependencies can be modelled as acyclic

task chains and that job modes depend on the modes of
predecessors in those chains. This scenario is similar to mixed-
criticality systems where some tasks triggers high-criticality
behavior in all tasks in the system. It thus may be applicable
to mixed-criticality systems. Alternatively, this approach may
allow to analyze scenarios where a subset of the tasks in the
system switch to high-criticality mode.

VI. POSSIBLE LINKS

In addition to the links already mentioned so far, there are
a number of possible connections between mixed-criticality
systems and probabilistic analysis of real-time systems. The
notion of different levels of assurance for high-criticality and
low-criticality tasks naturally can be interpreted as different
thresholds for acceptable residual risk of deadline misses.
Especially since high-criticality (or degraded-mode) behavior
is expected to be rare at runtime, if lower-criticality tasks
are seen as having a higher tolerance for occasional dead-
line misses, a probabilistic view would allow considerable
resources to be reclaimed.

For example, it might be interesting to explore whether it
is possible to extend the Monte Carlo approach by Bozhko
et al. [2] to a probabilistic mixed-criticality setup. If it is

possible to identify a small number of relevant job-arrival se-
quences that must be considered, it may be possible to sample
bounds on the deadline failure probability with a configurable,
criticality-specific level of confidence. In particular, it may
be possible to take mode changes into account simply by
sampling (also) schedules in which mode changes occur, so
that the final probability bounds reflect not only assurances
for high-criticality tasks, but also how low-criticality tasks
fare in the event of a mode change. In other words, a
probabilistic approach could provide low-criticality tasks with
much stronger guarantees than merely “best effort” in the event
that a higher-criticality mode is entered.

Probabilistic analyses could also exploit another opportunity
related to mode changes. A classic dual-criticality analysis
must address (at least) three scenarios: the system in sta-
ble low-criticality mode, the system in stable high-criticality
mode, and crucially, the system as it transitions from low-
to high-criticality. The latter case, the time of mode transi-
tion is the most challenging aspect from a scheduling point
of view, because increased high-criticality demand coincides
with the lingering effects of pre-mode-change low-criticality
interference, and hence typically represents the “assurance
bottleneck.” A probabilistic analysis could exploit that it is
unlikely that low-criticality tasks exhibit maximum resource
demand (and generate maximum interference) at precisely the
moment when a high-criticality task triggers a mode change
— at least if tasks of different criticalities are independent. A
more refined analysis down the line could then further extend
such an analysis to take into account possible dependencies
between high- and low-criticality tasks.

In a different direction, it would also be interesting to inject
the central notion of mixed-criticality systems into proba-
bilistic modeling. Specifically, the idea that high- and low-
criticality task parameters express different levels of assurance
can also be seen as different levels of confidence in the
correctness of specified mode probabilities. For example, when
characterizing the chance that a job enters an “exceptional
mode” associated with an increased execution cost (rather than
its cheaper “normal mode”), it is reasonable to expect that
a more risk-averse estimate would be obtained for a high-
criticality task than for a low-criticality task. Consequently,
it could be interesting to explore a different kind of what-if
analysis: what happens to high-criticality tasks if the proba-
bility distribution assumed for low-criticality tasks turns out
to be optimistic? This is akin to the classic mixed-criticality
question — what happens to high-criticality tasks if low-
assurance WCET estimates are optimistic — but comes with
a twist that makes it considerably more difficult: whereas it is
obvious when a low-assurance WCET estimate is exceeded,
it is generally much harder to pinpoint when a low-assurance
execution-time distribution is refuted by observations in prac-
tice. Thus, this line of exploration faces not only hard stochas-
tic analysis problems, but also open question concerning the
design of runtime mechanisms that would be appropriate for
probabilistic mixed-criticality systems.

VII. CONCLUSION

Probabilistic timing analysis may be an interesting approach
when considering mixed-criticality systems, as it may provide
argumentation to postpone or omit a mode switch if the
probability that a high-criticality task may miss a deadline is
sufficiently small. Furthermore, even if mode switches become
unavoidable, a probabilistic analysis may be able to recover
much pessimism at a specified degree of residual risk.

However, the field of probabilistic scheduling itself still
holds multiple open research questions, especially for es-
tablishing worst-case arrival patterns, when bounding the
deadline-miss rate, and when considering probabilistically
dependent jobs.

Therefore, extensions to mixed-criticality are not straight
forward and will require further advances in the field of
probabilistic scheduling. It thus seems interesting to start
a discussion on how such extensions could benefit mixed-
criticality research.

REFERENCES

[1] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis. An
empirical survey-based study into industry practice in real-time systems.
In 41st IEEE Real-Time Systems Symposium, RTSS, 2020.

[2] S. Bozhko, G. von der Brüggen, and B. B. Brandenburg. Monte carlo
response-time analysis. In 42nd IEEE Real-Time Systems Symposium,
RTSS, 2021.

[3] A. Burns and R. Davis. Mixed criticality systems-a review. Technical
report, University of York, 2022. 13th edition.

[4] K.-H. Chen and J.-J. Chen. Probabilistic schedulability tests for
uniprocessor fixed-priority scheduling under soft errors. In Symposium
on Industrial Embedded Systems, 2017.

[5] K.-H. Chen, M. Günzel, G. von der Brüggen, and J.-J. Chen. Critical
instant for probabilistic timing guarantees: Refuted and revisited. In
Real-Time Systems Symposium, 2022.

[6] K.-H. Chen, N. Ueter, G. von der Brüggen, and J.-J. Chen. Efficient
computation of deadline-miss probability and potential pitfalls. In
Design, Automation & Test in Europe, 2019.

[7] K.-H. Chen, G. von der Brüggen, and J.-J. Chen. Analysis of deadline
miss rates for uniprocessor fixed-priority scheduling. In 24th IEEE In-
ternational Conference on Embedded and Real-Time Computing Systems
and Applications, RTCSA, 2018.

[8] R. I. Davis and L. Cucu-Grosjean. A survey of probabilistic schedula-
bility analysis techniques for real-time systems. Leibniz Trans. Embed.
Syst., 6(1):04:1–04:53, 2019.

[9] R. Ernst and M. D. Natale. Mixed criticality systems - A history of
misconceptions? IEEE Design & Test, 33(5):65–74, 2016.

[10] A. Esper, G. Nelissen, V. Nélis, and E. Tovar. How realistic is the
mixed-criticality real-time system model? In RTNS, 2015.

[11] F. Markovic, A. V. Papadopoulos, and T. Nolte. On the convolution
efficiency for probabilistic analysis of real-time systems. In Euromicro
Conference on Real-Time Systems, ECRTS, 2021.

[12] D. Maxim and L. Cucu-Grosjean. Response time analysis for fixed-
priority tasks with multiple probabilistic parameters. In Real-Time
Systems Symposium, 2013.

[13] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In RTSS, 2007.

[14] G. von der Brüggen, K.-H. Chen, W.-H. Huang, and J.-J. Chen. Systems
with dynamic real-time guarantees in uncertain and faulty execution
environments. In 37th IEEE Real-Time Systems Symposium, RTSS, 2016.

[15] G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and
K. Morik. Efficiently approximating the probability of deadline misses
in real-time systems. In Euromicro Conference on Real-Time Systems,
2018.

[16] G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, K. Morik,
and B. B. Brandenburg. Efficiently approximating the worst-case
deadline failure probability under EDF. In 42nd IEEE Real-Time Systems
Symposium, RTSS, 2021.

Mixed-Criticality Scheduling for Parallel Real-Time
Tasks with Resource Reclamation

Qingqiang He1, Nan Guan2, Xu Jiang3

1The Hong Kong Polytechnic University, Hong Kong SAR
2City University of Hong Kong, Hong Kong SAR

3Northeastern University, China

Abstract—This paper considers the mixed-criticality schedul-
ing of parallel real-time tasks. With the purpose of guaranteeing
the deadline for hard real-time tasks and reclaiming computing
resources for soft real-time tasks, we propose an approach by
online monitoring the execution of hard real-time tasks and
adjusting the allocated number of cores dynamically. To achieve
this, we present a concept called allocation vector, which can
serve as the interface between hard real-time tasks and soft real-
time tasks: for hard real-time tasks, we derive a schedulability
test under the interface; for soft real-time tasks, we discuss the
design principle of how to determine the interface to reclaim
computing resources as much as possible. We demonstrate the
usefulness of the interface and the effectiveness of the proposed
approach through examples.

I. INTRODUCTION

This paper considers the mixed-criticality scheduling for
parallel real-time tasks under the federated scheduling paradigm.
The parallel real-time task is characterized by the volume and
the length. The volume is the total workload in this task,
and the length is the workload of the longest path in this
task. In federated scheduling [1], each heavy task (tasks with
the volume larger than its deadline) is assigned and executed
exclusively on a set of cores. Therefore, we can restrict our
attention to the scheduling of one parallel real-time task on a
set of cores.

The federated scheduling suffers from the resource-wasting
problem [2], [3] due to the pessimism within its analysis
techniques and the overly conservative characterization of
parallel real-time tasks. To address the resource-wasting within
the scheduling of one parallel real-time task, we propose a
mixed-criticality approach by online monitoring the execution
of the hard parallel real-time task, and dynamically adjusting
the allocated number of cores. Our approach can guarantee
the deadline of hard real-time tasks and reclaim computing
resources for soft real-time tasks at the same time. To achieve
this, we present a concept called allocation vector, which can
serve as the interface between hard real-time tasks and soft real-
time tasks: for hard real-time tasks, we derive a schedulability
test under the interface; for soft real-time tasks, we discuss the
design principle of how to determine the interface to reclaim
computing resources as much as possible.

Our approach only relies on the volume and the length of
parallel real-time tasks, not requiring the detailed structure of

the parallel task. The usefulness of the introduced interface and
the effectiveness of the proposed approach are demonstrated
through examples.

II. RELATED WORK

Two closely related works to this paper are [4], [5].
In [4], Agrawal et al. proposed a task model to represent

parallel real-time tasks using two pairs of volume and length
with different levels of assurance. One pair of volume and
length is very conservative and therefore trusted to a very
high level of assurance; the other is more representative of
the typical execution behavior. The task model enables the
scheduling algorithm to dynamically adjust the number of
cores assigned to an individual task during the execution of the
task. The adjustment of the number of cores is only based on
the task model which is obtained by offline profiling the parallel
real-time task, so [4] does not utilize the runtime information
to reclaim computing resources for soft real-time tasks.

In [5], Baruah extended the method in [4] by combining the
worst-case characterizations (i.e., the volume and length) and
experimental profiling of execution behavior of parallel real-
time tasks. Baruah motivated the work using conditional parallel
real-time tasks, since the existence of conditional constructs
makes the execution behavior of parallel real-time tasks more
complex and the worst-case characterizations more pessimistic.

III. SYSTEM MODEL

A. Task Model

A sporadic parallel real-time task is specified as a tuple
(G,D, T), where G is the DAG task model, D is the relative
deadline and T is the period. We consider constrained deadline,
i.e., D ≤ T . The DAG task model is a directed acyclic graph
G = (V,E), where V is the set of vertices and E ⊆ V × V
is the set of edges. Each vertex v ∈ V represents a piece of
sequential workload with worst-case execution time (WCET)
c(v). An edge (vi, vj) ∈ E represents the precedence relation
between vi and vj , i.e., vj can only start its execution after vi
finishes its execution. A vertex with no incoming (outgoing)
edges is called a source vertex (sink vertex). Without loss of
generality, we assume that G has exactly one source (denoted
as vsrc) and one sink (denoted as vsnk). In case G has multiple

1 1 1

3

1

3
0v

1v

2v

3v

4v
5v

(a) a DAG task example

t0 1 2 3 4 5 6

0v 2v

3v

1v

7

4v 5v

(b) an execution sequence

t0 1 2 3 4

4v

5 6

0v 5v2v

3v

1v

(c) another execution sequence

Fig. 1. An illustrative example.

source/sink vertices, a dummy source/sink vertex with zero
WCET can be added to comply with our assumption.

A path λ is a set of vertices (π0, · · · , πk) such that
∀i ∈ [0, k − 1], (πi, πi+1) ∈ E. The length of a path λ
is defined as len(λ) :=

∑
πi∈λ c(πi). A complete path is a

path (π0, · · · , πk) such that π0 = vsrc and πk = vsnk, i.e., a
complete path is a path starting from the single source vertex
and ending at the single sink vertex. The longest path is a
complete path with largest len(λ) in G. If there is an edge
(u, v) ∈ E, u is a predecessor of v, and v is a successor of u.
If there is a path in G from u to v, u is an ancestor of v and v
is a descendant of u. We use pred(v), succ(v), ance(v) and
desc(v) to denote the set of predecessors, successors, ancestors
and descendants of v, respectively.

Example 1. Fig. 1a shows a parallel real-time task G where
the number inside vertices is the WCET. The deadline and the
period D = T = 7. v0, v5 are the source vertex and the sink
vertex, respectively. The longest path is λ = (v0, v1, v4, v5) and
len(λ) = 6. For vertex v4, pred(v4) = {v1, v2}, succ(v4) =
{v5}, ance(v4) = {v0, v1, v2}, desc(v4) = {v5}.

B. Runtime Behavior

The parallel task G executes on a multi-core platform with
identical cores. A vertex v is eligible if all of its predecessors
have finished, thus v can be immediately executed if there
are available cores. The parallel task G is scheduled by any
algorithm that satisfies the work-conserving property, i.e., an
eligible vertex must be executed if there are available cores.

At runtime, vertices of G execute at certain time points on
certain cores under the decision of the scheduling algorithm.
An execution sequence ε of G describes which vertex executes
on which core at every time point. For example, two execution
sequences of the task in Fig. 1a are shown in Fig. 1b and Fig.
1c. For a vertex v, the start time s(v) and finish time f(v) are
the time point when v first starts its execution and completes
its execution, respectively. Note that s(v) and f(v) are specific
to a certain execution sequence ε, but we do not include ε in
their notations for simplicity. Without loss of generality, we
assume the source vertex of G starts execution at time 0, so
the response time R of G in an execution sequence equals
f(vsnk).

IV. MOTIVATION

This section discusses the scheduling algorithm of a parallel
real-time task in federated scheduling, which motivates this
work.

For a DAG task G = (V,E), two important characterizations
of G are the volume and the length. The volume (denoted as
vol(G)) is the total workload in this task and is defined as
vol(G) :=

∑
v∈V c(v). The length (denoted as len(G)) is the

length of the longest path in this task. For example, for the
task G in Fig. 1a, vol(G) = 10 and len(G) = 6. The volume
can be measured by executing the task in a platform with one
core, and the length can be measured by executing the task in
a platform with a sufficiently large number (bounded by the
number of vertices in this task) of cores [4].

In [6], Graham proposed a well-known response time bound
using the volume and the length of a DAG as follows. The
response time R of DAG task G scheduled by work-conserving
scheduling on m cores is bounded by (1).

R ≤ len(G) +
vol(G)− len(G)

m
(1)

Therefore, in federated scheduling, the number of cores m
allocated to a DAG G can be computed by (2).

m =

⌈
vol(G)− len(G)

D − len(G)

⌉
(2)

Equation (2) computes the minimum number of cores m such
that the response time bound in (1) is no larger than the deadline
D.

For a DAG task, the computing resources allocated according
to (1) and (2) exhibit several types of pessimism and cause a
large amount of resources being wasted, as summarized in the
following.
• Analysis Pessimism. The bound in (1) is derived by

constructing an artificial scenario where vertices not in the
longest path do not execute in parallel with the execution
of the longest path. However, in real execution, many
vertices not in the longest path actually can execute in
parallel with the longest path. As observed in [3], this type
of pessimism may cause the portion of wasted computing
resources arbitrarily close to 100%.

• Execution Pessimism. Parameters used in (2), such as
vol(G), len(G), are based on the worst case execution
time. To comply with the hard real-time requirements,
these worst case execution times can be overly pessimistic
[7], [8], and the actual execution time can be far less than
the WCET, leading to severe resource-wasting during
execution.

The analysis pessimism can be partially addressed through
improved offline analysis. For example, the technique of intra-
task priority assignment can be employed to improve system
schedulability [9]–[11]. Under this technique, priorities are
assigned to the vertices of a DAG task to control the execution
order of vertices and runtime behavior of the task. However,
the execution pessimism cannot be mitigated through offline

0 t0 t1 D

m

m0

m1

Fig. 2. An illustration of the scheduling for our approach.

analysis, since the required information (such as the actual
execution time of vertices) is only available during runtime.

In this paper, we propose an approach to address both two
types of pessimism by online monitoring the execution of
parallel tasks and adjusting the allocated number of cores
dynamically with the target of both satisfying the hard real-
time deadline and reclaiming computing resources for soft
real-time tasks.

V. OUR APPROACH WITH RESOURCE RECLAMATION

In this approach, during the execution of the parallel real-
time task, we collect information regarding the execution of the
hard real-time task and gradually reduce the allocated number
of cores to reclaim computing resources for soft real-time tasks.

A. The Scheduling Algorithm

Definition 1 (Allocation Vector). For a parallel real-time task
(G,D, T), the allocation vector Φ is a set of time points
{t0, · · · , tk} (k ≥ 0) satisfying all of the following conditions.

1) ∀i ∈ [0, k], 0 ≤ ti < D.
2) ∀i, j ∈ [0, k] and i < j, ti < tj .

Given a parallel real-time task (G,D, T) and the allocation
vector Φ = {t0, · · · , tk}, the scheduling starts at time 0 with
the number of cores m computed by (2). During the scheduling,
two types of information are monitored.

1) w(t): the volume of the workload executed from time
point 0 to time point t.

2) l(t): the cumulative length of time intervals during which
some core is idle from time point 0 to time point t.

At each time point ti, if G does not complete its execution, we
adjust the allocated number of cores to mi. The conditions for
mi will be derived in Section V-B. The scheduling is illustrated
in Fig. 2.

B. Schedulability Test for Hard Real-Time Tasks

Definition 2 (Critical Path [9]). The critical path λ∗ =
(π0, · · · , πk) of an execution sequence is a complete path
satisfying the following property.

∀πi ∈ λ∗ \ {π0} : f(πi−1) = max
u∈pred(πi)

{f(u)} (3)

The critical path is specific to an execution sequence of the
DAG task G. The critical path of G in an execution sequence
is not necessarily the longest path of G.

Example 2. For the execution sequence in Fig. 1b, the critical
path of G is (v0, v1, v4, v5). In Fig. 1c, the critical path of G

is (v0, v2, v4, v5), which is not the longest path of G. In Fig.
3b, the critical path of G is also (v0, v1, v4, v5).

Lemma 1. In an execution sequence under work-conserving
scheduling, when the critical path is not executing, all cores
are busy.

Proof. Suppose that the critical path of this execution sequence
is λ∗ = (π0, · · · , πk). ∀i ∈ (0, k], by Definition 2, πi−1 is with
the maximum finish time among all the predecessors of πi. This
means that when πi−1 completes its execution, all predecessors
of πi have completed execution. Therefore, πi is eligible at
f(πi−1). If some core is idle in [f(πi−1), s(πi)], it contradicts
the fact that the scheduling is work-conserving.

Lemma 2. In an execution sequence under work-conserving
scheduling, when some core is idle, the critical path is
executing.

Proof. Lemma 2 is the contrapositive of Lemma 1.

Theorem 1. At each time point ti (i ∈ [0, k]), if the allocated
number of cores mi is computed by (4) and (5), then the
parallel real-time task G is schedulable under work-conserving
scheduling with the allocation vector Φ = {t0, · · · , tk}.
if vol(G)− w(ti) ≤ len(G)− l(ti), then

mi = 1 (4)

else

mi =

⌈
vol(G)− w(ti)− len(G) + l(ti)

D − ti − len(G) + l(ti)

⌉
(5)

Proof. Let ε be the execution sequence under analysis of G.
At time point ti, we focus on the remaining graph Gi of G
(i.e, the part of G that has not been executed until ti). We
denote the critical path of ε as λ∗. Since li is the cumulative
length of time intervals before ti where some core is idle, by
Lemma 2, λ∗ is executing in these time intervals. Therefore,
the length of λ∗ in Gi (i.e., the length of λ∗ executing after
ti) is at least len(λ∗)− l(ti), which is bounded by

len(G)− l(ti)
And the volume of Gi is bounded by

vol(G)− w(ti)

By (1), the response time of Gi is bounded by

len(G)− l(ti) +
vol(G)− w(ti)− len(G) + l(ti)

mi

The new deadline of Gi is D − ti. Let

len(G)− l(ti) +
vol(G)− w(ti)− len(G) + l(ti)

mi
≤ D − ti

which means (5).

Note that the volume vol(G) and length len(G) in Theorem
1 are profiled and determined offline. We do not need to monitor
these two parameters online.

Corollary 1. The schedulability test in Theorem 1 dominates
the test in [1] (shown in (1) and (2)) in the sense that the
computing resource allocated by Theorem 1 is no larger than
that of [1].

Proof. It is sufficient to show that ∀i ∈ [0, k], the mi in (5) is
no larger than the m in (2), i.e.,
⌈
vol(G)− w(ti)− len(G) + l(ti)

D − ti − len(G) + l(ti)

⌉

≤
⌈
vol(G)− len(G)

D − len(G)

⌉
(6)

Suppose t0 = 0, we have w(0) = 0, l(0) = 0, so (6) holds
trivially. Therefore, to prove (6), it suffices to show that ∀i ∈
[0, k), mi+1 ≤ mi, i.e.,

vol(G)− w(ti+1)− len(G) + l(ti+1)

D − ti+1 − len(G) + l(ti+1)

≤ vol(G)− w(ti)− len(G) + l(ti)

D − ti − len(G) + l(ti)
(7)

We define
∆(t) := ti+1 − ti

∆(w) := w(ti+1)− w(ti)

∆(l) := l(ti+1)− l(ti)

Equation (7) can be rewritten as (8).

vol(G)− w(ti)− len(G) + l(ti)− (∆(w)−∆(l))

D − ti − len(G) + l(ti)− (∆(t)−∆(l))

≤ vol(G)− w(ti)− len(G) + l(ti)

D − ti − len(G) + l(ti)
(8)

Be aware of the following statement: for 0 < x1 < x2, 0 <
y1 < y2,

x1
y1
≥ x2
y2
⇒ x2 − x1

y2 − y1
≤ x2
y2

Therefore, to prove (8), it suffices to show that

∆(w)−∆(l)

∆(t)−∆(l)
≥ vol(G)− w(ti)− len(G) + l(ti)

D − ti − len(G) + l(ti)
(9)

The length of time interval [ti, ti+1] is ∆(t). During time
interval [ti, ti+1], the allocated number of cores is mi. The
volume of the workload executed in [ti, ti+1] is ∆(w). By
the definitions of l(t) and ∆(l), ∆(l) is the cumulative length
of time intervals during which some core is idle in [ti, ti+1].
Therefore, we have

∆(w) ≥ mi(∆(t)−∆(l)) + ∆(l) (10)

which means
∆(w)−∆(l)

∆(t)−∆(l)
≥ mi

Therefore, (9) holds, which means that (6) holds.

0 1 2 3 4 5 6

0v

2v

3v

1v

7

4v 5v

(a) federated scheduling in [1]
0 1 2 3 4 5 6

0v 1v

7

4v 5v

3v

3v

0t

2v
1t

(b) the proposed approach

Fig. 3. Compare the allocated computing resources between the original
federated scheduling and our approach.

C. Design Principle for Soft Real-Time Tasks

This subsection discusses that for a parallel task, how to
determine the allocation vector. The objective is that at each
time point ti+1, we want to reduce the number of cores mi+1

compared to mi. By Corollary 1, we know that this reduction
of cores lies in (10). Therefore, during time interval [ti, ti+1],
the monitoring procedure should observe the type of execution
satisfying both of the following conditions.

1) During the execution, at least one core is idle.
2) During the execution, more than one core are busy.

The more this type of execution, the more the number of cores
can be reduced. With this guideline, the allocation vector can
be determined by offline profiling or dynamically determined
during execution.

D. An Example

This subsection provides an example to illustrate the useful-
ness of the allocation vector interface and the effectiveness of
the proposed approach. For the parallel real-time task G in Fig.
1a, suppose that the deadline D = 7. The volume vol(G) = 10
and the length len(G) = 6. Fig. 3 shows the possible execution
sequences and the allocated computing resources (circled by
red rectangles) under the original federated scheduling in [1]
and our approach.

In Fig. 3a, by (2), the allocated number of cores m =
(10−6)/(7−6) = 4. So the total allocated computing resources
(the area of the red rectangle) are m ×D = 4 × 7 = 28. In
Fig. 3b, suppose that the allocation vector is Φ = {t0 =
2, t1 = 3}. At time point 0, same as the original federated
scheduling, the allocated number of cores m = 4. At time point
t0 = 2, the monitored information are w(t0) = 4, l(t0) = 2.
vol(G)−w(t0) = 6, len(G)− l(t0) = 4 and D − t0 = 5. By
(5), the adjusted number of cores m0 = (6−4)/(5−4) = 2. At
time point t1 = 3, the monitored information are w(t1) = 6,
l(t1) = 2. vol(G) − w(t1) = 4, len(G) − l(t1) = 4 and
D − t1 = 4. Since vol(G)− w(t1) ≤ len(G)− l(t1), by (4),
the adjusted number of cores m1 = 1. So the total allocated
computing resources are 4×2 + 2×1 + 1×4 = 14. Therefore,
in this example, our approach reclaims (28− 14)/28 = 50%
computing resources for soft real-time tasks and guarantees
that the hard real-time task meets its deadline.

VI. CONCLUSION

In this paper, to address the analysis and execution pes-
simism that lead to the resource-wasting problem in federated
scheduling, we propose a mixed-criticality approach by online
monitoring the execution of hard parallel real-time tasks,
and dynamically adjusting the allocated number of cores to
reclaim computing resources for soft real-time tasks. We give
an example that illustrates the effectiveness of the proposed
approach.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive and insightful comments.

REFERENCES

[1] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in 2014
26th Euromicro Conference on Real-Time Systems. IEEE, 2014, pp.
85–96.

[2] N. Ueter, G. Von Der Brüggen, J.-J. Chen, J. Li, and K. Agrawal,
“Reservation-based federated scheduling for parallel real-time tasks,” in
2018 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2018, pp.
482–494.

[3] X. Jiang, N. Guan, H. Liang, Y. Tang, L. Qiao, and W. Yi, “Virtually-
federated scheduling of parallel real-time tasks,” in 2021 IEEE Real-Time
Systems Symposium (RTSS). IEEE, 2021, pp. 482–494.

[4] K. Agrawal and S. Baruah, “A measurement-based model for parallel
real-time tasks,” in 30th Euromicro Conference on Real-Time Systems
(ECRTS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

[5] S. Baruah, “Resource-efficient execution of conditional parallel real-time
tasks,” in European Conference on Parallel Processing. Springer, 2018,
pp. 218–231.

[6] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM
journal on Applied Mathematics, vol. 17, no. 2, pp. 416–429, 1969.

[7] S. Edgar and A. Burns, “Statistical analysis of wcet for scheduling,” in
Proceedings 22nd IEEE Real-Time Systems Symposium (RTSS 2001)(Cat.
No. 01PR1420). IEEE, 2001, pp. 215–224.

[8] G. Bernat, A. Colin, and S. M. Petters, “Wcet analysis of probabilistic
hard real-time systems,” in 23rd IEEE Real-Time Systems Symposium,
2002. RTSS 2002. IEEE, 2002, pp. 279–288.

[9] Q. He, X. Jiang, N. Guan, and Z. Guo, “Intra-task priority assignment in
real-time scheduling of dag tasks on multi-cores,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 10, pp. 2283–2295, 2019.

[10] S. Zhao, X. Dai, I. Bate, A. Burns, and W. Chang, “Dag scheduling
and analysis on multiprocessor systems: Exploitation of parallelism and
dependency,” in IEEE Real-Time Systems Symposium. IEEE, 2020.

[11] Q. He, M. Lv, and N. Guan, “Response time bounds for dag tasks with
arbitrary intra-task priority assignment,” in 33rd Euromicro Conference on
Real-Time Systems (ECRTS 2021). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2021.

A Secure Resilient Real-Time Recovery Model,
Scheduler, and Analysis

Abdullah Al Arafat∗, Sudharsan Vaidhun†, Bryan C. Ward‡, Zhishan Guo∗
∗Department of Computer Science, North Carolina State University

†Department of Electrical and Computer Engineering, University of Central Florida
‡Department of Computer Science, Vanderbilt University

Abstract—Real-time and embedded systems are increasingly
being applied in the command and control of safety- and mission-
critical applications such as autonomous vehicles and critical
infrastructure. Meanwhile, to enable new capabilities, we are
witnessing a rapid growth in the complexity and connectivity of
such devices. Unfortunately, such designs often introduce new
attack vectors, necessitating inventions that provide stronger
security and resilience. This paper presents a secure and resilient
scheduling technique for hard real-time applications. Specifically,
this approach builds upon the well-known mixed-criticality
scheduling framework and demonstrates a new dimension of
criticality: security criticality. In the presented model, low-
security-criticality workloads are dropped in the event of a
malicious event, both to minimize the attack surface, as well
as enable the timely scheduling of both a recovery task and the
re-execution of the victim task. This paper demonstrates how
the existing mixed-criticality scheduling approaches are overly
pessimistic in light of this model, and presents a new scheduling
algorithm for it. The performance of the presented algorithm
and analysis is evaluated through schedulability experiments.

I. INTRODUCTION

Real-time and embedded systems are being employed across
society to monitor and control increasingly complex cyber-
physical systems. For example, modern automobiles have
dozens of onboard computers to control the engine, transmis-
sion, braking, driver-assist features, and infotainment systems.
In industrial-control applications, the Industrial Internet of
Things (IIoT) promises greater efficiencies through increased
communication, coordination, and autonomy of industrial pro-
cesses ranging from power systems to manufacturing.

As a society, we are increasingly reliant upon such systems
and enjoy the capabilities and efficiencies such interconnected
systems offer. However, the complexity of these systems
increases the attack surface, and their increasing connectiv-
ity makes vulnerabilities even more accessible to attackers.
Furthermore, embedded systems are often not developed with
the same cyber-security scrutiny that is common in general-
purpose systems. For example, the Mirai botnet [2] exploited
the unchanged universal factory-default password to co-opt
webcams into a powerful botnet. While many attacks can be
detected and/or prevented via known defensive techniques, it
is critical that a system is able to respond and recover from
such threats while preserving real-time constraints.

Common cyber-security defenses are often eschewed in
real-time and embedded systems. For example, address-space
layout randomization (ASLR) is employed ubiquitously across
general-purpose computing systems and is enabled by de-

fault in Windows, Mac OSX, and Linux. But randomization-
based defenses are often avoided in real-time systems for
predictability reasons as they can significantly increase worst-
case performance [7], [9].

The most common class of vulnerabilities are memory-
corruption vulnerabilities, which are bugs that an attacker can
exploit to corrupt regions of memory. Microsoft and Google
have reported such vulnerabilities account for approximately
70% of vulnerabilities in their codebases [19], [22]. While
there are techniques to eliminate such vulnerabilities, they
are expensive (Softbound [18] has overheads over 100%), or
impractical (rewrite all code in a memory-safe language such
as Rust). Therefore, most runtime defenses protect against
memory-corruption-based attacks by seeking to prevent ex-
ploitation by crashing the process. For example, control-flow
integrity (CFI) [1], [24] performs checks at control-flow tran-
sitions to ensure valid branch targets, and crashes the process
upon invalid control flow. Importantly, runtime defenses are in-
tegral to the protected task, that is, they are executed within the
protected process, not in a separate process as in monitoring-
based security approaches [10], [11], [12], [13]. We note that
runtime defenses are designed to prevent exploitation, while
monitoring-based approaches detect anomalies and evidence
that the system has been compromised. Therefore, monitoring-
based security approaches are orthogonal to the runtime de-
fenses we consider, but are outside the scope of this work.

Processes in real-time and embedded systems often control
physical devices, and hence cannot simply crash to prevent an
attack—such an approach could itself compromise the system.
Instead, in such applications, computation could be restarted
to maintain continuous safe control of the physical process.
However, restarting a real-time job may significantly impact
its ability to complete before its deadline, and may introduce
additional demand that may in turn compromise the temporal
integrity of other tasks in the system, if not properly mitigated.

These observations motivate the need for new task models,
scheduling algorithms, and analysis to enable resilience to
cyber attacks, i.e., the ability to maintain some safe level of
operation while recovering from an attack. While there may
be simple or naı̈ve means of supporting such behavior in
existing scheduling and analysis frameworks, fully maximizing
the platform utilization while enabling such resilience requires
fundamentally new models, algorithms, and analysis.
Mixed criticality. This problem has several important com-
monalities with mixed-criticality (MC) scheduling, specifi-

cally, the ability to operate in a degraded mode of execution.
Critically, however, MC scheduling models have principally
been developed to handle one aberrant behavior—temporal
overruns—not security incidence. However, Burns has recently
argued that work on MC systems should be generalized to
multi-mode systems [6]. This work is an exemplar of this
argument, and we demonstrate a multi-mode system in which
mode switches are triggered by security events rather than
timing overruns.

There are several important similarities and differences
between the standard Vestal-model [23] for MC scheduling
and the needs of a resilient real-time recovery model. For
example, when a security event is detected, it is useful to
shed less-critical workloads to ensure the continued correct
operation of high-criticality work. Shedding work is especially
useful for security as it can also reduce the attack surface of
the system. There are, however, several important differences.
First, when a defense prevents an attack it crashes the process,
requiring re-execution of the job and additional processing
time. Another key difference with security criticality is that
memory-corruption attacks are most likely to target only
a single task, not all high-criticality tasks simultaneously.
Memory-corruption attacks target vulnerabilities in code, and
because different tasks have different code, they are not likely
to be vulnerable to the same exploit payloads.

As a result, adapting existing MC system analysis results
will be too pessimistic. In addition, in an MC environment, the
system often returns to normal mode when a transient overload
condition subsides. In contrast, returning to a normal mode of
execution after detection of a cyber threat may require addi-
tional recovery processing for computations such as (i) adding
the malicious input to a blocklist to ensure the re-executed task
will not be attacked, [17] (ii) forensic analysis, (iii) human-
operator communication, and/or (iv) other actions to harden
the security posture of the system, such as substituting binaries
with stronger-defended ones, etc. Such additional computation
time must also be modeled and analyzed. Notably, shedding
less-critical workload, with the proper analysis, frees computa-
tion time to enable such recovery processing without affecting
the utilization of the normal mode.
Related Works. Previous work has studied co-scheduling se-
curity monitor tasks [10], [11], [12], [13] with real-time tasks
in fixed-priority partitioned multi-core systems with/without
allowing migration of monitor tasks. These papers assume
that the security tasks monitor security events and potentially
detect the attacks (i.e., works as intrusion detection system
(IDS)). However IDS does not stop attacks, they merely
attempt to detect malicious activity, while run-time defenses
(e.g., CFI [8], [24], [27], data flow integrity (DFI) [4]) prevent
attacks from succeeding by crashing the process. Note that,
unlike IDS, runtime defenses are integral to the task itself,
and are not independently scheduled. Therefore, detection
using runtime defenses is real-time and does not have any
scheduling overhead. In SR3, tasks are instrumented with a
runtime defense instead of IDS.
Contributions. Based on these observations, we present the

first resilient recovery scheduling model and analysis for
secure real-time systems. We identify that temporal criticality
and security criticality are orthogonal dimensions of criticality
and that by designing a system of differing security criticalities
enables both efficient recovery after an attack, as well as the
minimization of the attack surface in the presence of a cyber
threat. We make the following contributions:

• We propose SR3, a secure and resilient real-time recovery
task model that can recover from an attack at runtime
while maintaining the real-time correctness of high-
security-critical tasks.

• We develop a scheduling algorithm for the presented task
model using earliest-first deadline (EDF) with modified
virtual deadlines for security-critical tasks.

• We conduct schedulability evaluations that demonstrate
the effectiveness of our scheduling algorithm over
adapted existing scheduling schemes.

II. MODEL AND PROBLEM

A. Threat Model

We assume a threat model consistent with other prior works
on run-time defenses [8], [24], [27]. Specifically, we assume
a write-what-where vulnerability that an attacker can leverage
to corrupt code pointers1 to hijack control flow to attacker-
specified location(s). Significant research has shown that even
such simple and common vulnerabilities can be exploited
using return-oriented programming (ROP) [21] or other attack
techniques (e.g., [26]) to completely hijack control flow and
implement Turing-complete attacker-controlled logic. This is
a very common and powerful threat model.

We assume the system is instrumented with a real-time
runtime defense such as control-flow integrity (CFI) [8], [24],
[27], [20], data-flow integrity [4], or an address-randomization
defense [7], [9]. Notably, all of these defense techniques
prevent further exploitation of a task by crashing the process.

Attacks on the scheduler or RTOS itself are outside the
scope of our threat model. We note, however, that the scheduler
and RTOS can be made trustworthy if using a verified RTOS,
(e.g., seL4 [15]), or by using a trusted execution environ-
ment (e.g., ARM TrustZone) [25]. Notably, however, attacks
related to the confidentiality (e.g., side-channel attacks) of the
workloads are out of the scope of this work. We also note
that IDS as additional security tasks scheduled with regular
workloads [10], [11], [12], [13] are outside the scope and, in
fact, these models are orthogonal to SR3.

B. System Model

Let τ ′ = {τ1, τ2, ..., τn} be a set of n sporadic and implicit-
deadline tasks scheduled on a uniprocessor. Each task τi can be
represented by three tuple {Ci, Ti, ςi}, where Ci is the worst-
case execution time (WCET), Ti is the minimal inter-arrival
separation as well as the relative deadline (i.e., Di = Ti) of
the task instances (jobs). We assume that τi is instrumented
with runtime security defense(s), and that their overheads are

1A code pointer is any address stored in a data section that points to
executable code. Return addresses on the stack are a frequent attacker targets.

2

TABLE I: Tasks of differing temporal and security criticalities.

Temporal Criticality
High Low

High Safety-critical Encryption key management
Security Control Processing software, or IDS

Criticality Low Processing non-mission- Infotainmentcritical sensor inputs

included within Ci. We assume each task can potentially
release an infinite sequence of jobs. Let ςi ∈ {0, 1} denote
whether task τi is of high or low security criticality. We use
τς = {τi|ςi = 1} and τ

Cς
= {τi|ςi = 0} to denote the set of

high-security-criticality (HI-security) tasks and low-security-
criticality (LO-security) tasks, respectively. We model HI- and
LO-security tasks based on the observation that some tasks
are not essential to maintain safe or secure operation of the
system, especially when the system may be under attack. This
is depicted in Table I. For example, in an automotive sys-
tem, infotainment services are not mission-essential functions,
and should neither interfere with high security- or temporal-
criticality tasks. Some tasks are also high criticality with
respect to both security and temporal criticality, as they support
mission-critical functionality. However, there are some tasks
that could be critical to the security of the system, but be less
critical to the temporal correctness of the system. For example,
intrusion detection software or key management for encrypted
communication may be critical to the security of the system,
even if their timing is not mission critical. Alternatively, some
sensor readings may support optional or non-mission-critical
functionalities, which could be disabled in the presence of a
security threat. However, in order to maintain consistent state,
their processing is timing critical.

Note that LO-security tasks may themselves contain vul-
nerabilities. When the system is under attack, minimizing the
attack surface is a valuable defense in and of itself. Given this
motivation and model, we define the following terms:

Definition 1. (Victim Task and Targeted Task) Any task
τv ∈ τ ′ is a victim task when it is attacked during run-
time. As control-flow-hijacking attacks leverage one or more
vulnerabilities within a single process only, we assume that
an attack will target a single task. We assume the attack is
detected by the process crashing as a result of a defensive
mechanism such as CFI [1], [8], [24], as described in our
threat model. Consequently, the attack is detected at or before
the task completes its execution budget. We further denote a
HI-security victim task τv ∈ τς as a Targeted Task, τt, with an
execution budget of Ct.

Definition 2. (System Modes) The system will begin its
execution under normal mode, during which no attack to
security task is detected. During runtime, once a victim task
is identified, the system will immediately switch into recov-
ery mode. Proper actions (see below) will be taken during
recovery mode to prevent the system from further exploitation.

When transitioning to the recovery mode, additional actions
may be taken to facilitate recovery, for example, additional
monitoring or validation of the system, forensic analysis,

TABLE II: Workload considered in Example 1.

Task ID Ci Ti ςi
τ1 1 3 0
τ2 2 9 1
τ3 5 25 1
τR 1.5 15 −

communication with human operators, etc. We model this
additional workload as a recovery task. This task is in addition
to the regular HI- and LO-security tasks as defined below:

Definition 3. (Recovery Task) The recovery task τR =
{CR, TR} is a task that is activated/released upon detection
of an attack (which only leads to execution failure) during
runtime, where CR is its execution budget and TR is the
period. The release time of the recovery task, rR, is equal
to the system mode switch instant. Note that each HI-security
task could have an individual recovery task. However, from
the analytical perspective, taking CR = max{Ci

R} covers
the worst-case where Ci

R is the WCET of recovery task
corresponding to ith HI-security task.

The whole SR3 system workload contains the HI- and LO-
security tasks, as well as the recovery task, i.e., τ = {τ ′, τR}.
Correctness Criteria. Given the SR3 system, which contains
a set of HI- and LO-security tasks and the recovery task, a
correct scheduler must

1) guarantee that all HI- and LO-security tasks receive
enough execution and meet their deadlines during normal
mode;

2) ensure that all HI-security tasks (that are not experiencing
any failure, i.e., except the Targeted task) continue to
receive normal execution budget and meet their deadlines
during recovery mode;

3) ensure that if the victim task is a Targeted task (the failing
HI-security2 task being attacked), then the victim task will
receive another full re-execution budget (of its original
WCET, Ci) beyond the mode switch point and meets its
original deadline;

4) provide the recovery task with enough execution budget
before its deadline during recovery mode;

Our objective is to identify a correct online scheduling
mechanism and derive an offline schedulability test. Note that
once there is a detected attack (and thus a mode switch),
guarantees to service of LO-security tasks are no longer
required, and this workload is dropped to minimize the attack
surface. We assume that the malicious input can be placed
in a blocklist, and that either a known-safe or sanitized input
is used by the re-executed job. This assumption is consistent
with prior work [17].

Unfortunately, the standard uniprocessor scheduling algo-
rithms (e.g., Earliest Deadline First (EDF)) cannot correctly
schedule the task set. An illustrative example is given below:

2When the victim task is a LO-security one, a mode switch is triggered
immediately, while no re-execution budget will be allocated, as no guarantees
are provided to LO-security tasks in recovery mode.

3

Example 1. Consider a task set τ = {τ1, τ2, τ3, τR} with
parameters presented in Table II. This regular sporadic task
set is schedulable on a uniprocessor system under the earliest
deadline first (EDF) scheduler as the utilization (

∑ Ci

Ti
) of the

task set is 0.855 (including the utilization of recovery task).
Now let us map the SR3 system workload to a sporadic

task model for EDF scheduling by doubling the execution
of HI-security tasks, (C ′

2 = 4, C ′
3 = 10) and keep the

recovery task always active. After mapping the task set to a
sporadic task model for EDF scheduling, the utilization of the
mapped task set becomes 1.277. Therefore, the mapped task
set with security awareness is not schedulable by EDF. We will
later see that the task set is schedulable under our proposed
scheduling algorithm.

III. SCHEDULING ALGORITHM

In this section, we present our proposed scheduling algo-
rithms for the SR3 system workload. We need to re-execute
the targeted task after an adversarial attack following the task
model. As demonstrated by Example 1, directly employing
EDF scheduler may lead to a too narrow scheduling window
for HI-security tasks upon attack and thus lead to deadline
misses. Therefore, we proposed to adopt the concept of
virtual deadline, such that the HI-security tasks receive proper
‘promotion’ under the normal mode.

Let us start with a general overview of our proposed
algorithm. At any instant in normal mode, we aim to promote
the execution of jobs of HI-security tasks over LO-security
tasks, maintaining the deadline constraints of all tasks. To do
so, we compute a virtual deadline Dv

i = x · Di for each
HI-security task such that the virtual deadline is less than
or equal to the original deadline of the tasks (i.e., no task
exceeds the original deadline). After computing a suitable
virtual deadline for each HI-security task, HI-security tasks are
scheduled using their virtual deadline and LO-security tasks
with their original deadline following the EDF algorithm. The
window between the virtual and actual deadlines for each HI-
security job is ‘reserved’ for the HI-security task’s potential
re-execution upon attack/mode switch. Further, in recovery
mode, all LO-security tasks are dropped immediately at system
mode-switch instant. Then, in recovery mode, all HI-security
tasks and the recovery task are scheduled following the EDF
algorithm using the original deadlines.

We present a way of determining the virtual deadline of the
HI-security tasks and so the schedulability test of the schedul-
ing algorithm. In Subsection III-A, we present the utilization-
based schedulability analysis of the proposed algorithm (we
denote it as sEDF-VD to distinguish it from EDF-VD [3]).

A. sEDF-VD

Given a sporadic implicit-deadline task set τ , one needs to
perform a schedulability test for the task system prior to the
runtime to determine whether the task system is schedulable
or not. If the task system is schedulable, the sEDF-VD finds
a virtual deadline Dv

i = x ·Di for all HI-security tasks via a
common ‘shrinking factor’ x ∈ (0, 1]. In Algorithm 1, we

Algorithm 1: sEDF-VD based Schedulability Test
(Virtual Deadline Setting)

Input: A SR3 system workload τ = {τς , τ
Cς
, τR}

1 x← Uς

1−U

Cς
; // common shrinking factor for all τi ∈ τς

2 for ∀τt ∈ τς do
3 if xU

Cς
+ Uς + ut + uR > 1 then

4 return FAILURE; // no x that satisfy Theorem 1
5 end
6 end
7 return x;

present an offline schedulability test for the task set. The
algorithm returns a common shrinking factor x for each HI-
security task if the task set is schedulable, or FAILURE if
the task set is not schedulable under the correctness criteria
presented in Section II. The initial shrinking factor x in Line
1, Algorithm 1 comes from Lemma 1 and the conditional
statement in Line 3, Algorithm 1 from Lemma 2. Both
Lemmas are discussed in the following.

We need to determine a feasible range of x and demonstrate
its correctness. First we introduce additional notation.
Utilization parameters. The utilization of an implicit-
deadline sporadic task is the ratio of its WCET (Ci) to the
period (Ti). The utilization of the task system is the summation
of all individual tasks in the set.

• ui =
Ci

Ti
is the utilization of task τi.

• U
Cς
=

∑
τi∈τ

Cς
ui is the utilization of LO-security task set.

• Uς =
∑

τi∈τς
ui is the utilization of HI-security task set.

We will now derive the schedulability constraints of the SR3

system workload considering the presence of a targeted task
(τt ∈ τς) instead of any victim task through Lemma 1 and 2.

Lemma 1. In normal mode, all jobs of LO-security tasks
meet their actual deadline and all jobs of HI-security tasks
meet their virtual deadline under sEDF-VD for the following
sufficient inequality condition,

x ≥ Uς

1− U
Cς

(1)

Proof Sketch. Let us consider a fluid schedule [14] (a con-
ceptual scheduling scheme where each task gets a uniform
execution rate over the scheduling period and the scheduler is
schedulable if the total execution rate of all tasks is less than or
equal to one), where each task in the task set is continuously
assigned an execution rate of ui for each LO-security task.
Now, for HI-security tasks, we use virtual deadline deduced
by multiplying the actual deadline by x(≤ 1). Therefore, the
fluid scheduler will assign a continuous execution rate of ui

x
for each HI-security task. So, using the utilization bound of
EDF [16], the task set will be schedulable if,

∑

τi∈τ
Cς

ui +
∑

τi∈τς

ui

x
= U

Cς
+

Uς

x
≤ 1

So, the fluid schedule is feasible as the total utilization is less
or equal to one. As the EDF in preemptive uniprocessor is
optimal, the fluid schedule is also feasible by EDF.

4

Lemma 2. In recovery mode, all HI-security tasks meet their
actual deadlines, and the recovery task meets its deadline
under EDF, if

xU
Cς
+ Uς + ut + uR ≤ 1 (2)

where ut and uR is the utilization of targeted task (τt ∈ τς)
and recovery task, respectively.

Proof Sketch. Let us consider contrapositive. Suppose a job
misses its deadline. Being in recovery mode, all LO-security
jobs have been dropped and cannot miss a deadline. Therefore,
the job missing its deadline must be a HI-security task. Let
us consider a minimal instance3 of jobs released by the task
set, I , on which one job missed the deadline. Without loss
of generality, we consider the earliest release time of a job in
I (the last idle instant) as zero (0), and the deadline missed
instant of a job in I as td. Let t∗ denote the mode switch
instant triggered by the job of targeted task τt. Note, the mode
switch instant must be no later than the job’s virtual deadline,
i.e., t∗ ≤ Dv

t .
Note that all jobs in I must experience some execution in

[0, td) except the job missed deadline at td. Let us consider the
earliest release time of the job J amongst those executed in
[t∗, td) is a, and its deadline d. We will calculate the total ex-
ecutions of jobs in set I for four mutually exclusive subsets—
subset of jobs from LO-security tasks, other HI-security tasks4,
the targeted task, and the recovery task separately.
Subset-1. Any LO-security task τi ∈ τ

Cς
in I has an execution

wi in the considered scheduling window,

wi ≤ (a+ x(td − a))ui (3)

Subset-2. Any other HI-security task τi ∈ τς \ τt in I has an
execution wi in the considered scheduling window,

wi ≤
ui

x
a+ (td − a)ui (4)

Subset-3: The targeted task τt ∈ τς has an execution,

wt ≤
a

x
ut + (td − a)2ut (5)

Subset-4. The recovery task τR has an execution of,

wg ≤ (td − a)uR (6)

Now, total execution of the jobs in I would be greater than
the scheduling window length, td to miss a deadline.

∑

τi∈τ
Cς

wi

+

 ∑

τi∈τς\τt
wi

+ wt + wg > td

⇒ xU
Cς
+ Uς + ut + uR > 1; (simplified using eq. 3,4,5,6)

Thus, the minimal job instances, I will be schedulable if,

xU
Cς
+ Uς + ut + uR ≤ 1

3By minimal instance, we mean any set of jobs from which reducing one
job would make the jobs set schedulable.

4By ‘other HI-security tasks’, we refer all HI-security tasks but the targeted
task (τς \ τt).

Hence Lemma 2 follows.
Using the Lemma 1 and 2, we get following scheduling test

for sEDF-VD:

Theorem 1. A SR3 system workload τ , where the victim task
is a targeted task, can be successfully scheduled by sEDF-
VD on an uniprocessor if the following (sufficient) conditions
hold:

(A) : x ≥ Uς

1− U
Cς
; [from Lemma 1]

(B) : x ≤ 1− Uς − ut − uR

U
Cς

,∀τt ∈ τς ; [from Lemma 2]

Example 2. Let revisit the task set given in Example 1. Using
Theorem 1 (A), we get x ≥ 0.633 and for Theorem 1 (B), x ≤
0.766 for the task set. Note that, in condtion (B) of Theorem 1,
we need to find the lowest value of x which can be found
using max{ut|τt ∈ τς} in calculation of x. So there is an x
that satisfy both of the conditions of Theorem 1. Therefore, the
task set is schedulable for sEDF-VD.

Note that if we map the SR3 system workload of Table II
to mixed-criticality model [23] doubling the execution time
of all HI-security tasks in recovery mode (Cn

i = Ci, C
e
i =

2Ci,∀τi ∈ τς) and the recovery task, τR as (Cn
R = 0, Ce

R =
CR), then the lower limit of shrinking factor x by Theorem 1
of [3] is 0.6333 and the upper limit by Theorem 2 of [3] is
0.1666. Therefore, there is no x that satisfy the schedulability
constraints of mixed systems by EDF-VD presented in [3] for
this mapped task set.

IV. EVALUATION

In this section, we evaluate our proposed algorithm. We will
first explain the baseline algorithms that we consider. Next,
we will present the workload generation procedure used to
generate random task sets. Finally, we present the simulation
results and discuss observations.
Baselines. The first baseline algorithm that we consider is
the earliest deadline first (EDF) algorithm [16]. The EDF
algorithm is used to schedule a workload that follows the
sporadic task model and therefore to utilize the EDF algorithm,
we map our proposed SR3 system to the standard sporadic
task model by doubling the utilization of each HI-security
task in the system to account for the worst-case. Additionally,
we also include the recovery task in the task set. With our
proposed task model mapped to the sporadic task model, we
use the utilization-based schedulability test for EDF algorithm
to determine the schedulability.

The second baseline algorithm that we considered is the
earliest deadline first with virtual deadline (EDF-VD) algo-
rithm. EDF-VD algorithm is a widely accepted scheduler for
the Vestal’s mixed-criticality task model. We map our SR3

system to the mixed-critical task model by allocating twice
the utilization in the recovery mode for the HI-security tasks.
We also add the recovery task as a HI-criticality task to the
system where the normal execution budget of the recovery
task is assumed to be 0. With these modifications, we apply the

5

0.0 0.2 0.4 0.6 0.8 1.0

Utilization of tasks in normal mode U

0

20

40

60

80

100
A

cc
ep

ta
n

ce
R

at
io

%

Algorithm

sEDF-VD

uR
0.1

0.2

0.3

0.5

EDF [15]

EDF-VD [3]

Fig. 1: Acceptance ratio of three different algorithms under
multiple utilization settings

EDF-VD schedulability test [3] to determine the schedulability
of the task set.
Workload generation. The SR3 task set generation is con-
trolled by the following parameters, where the default values
are represented in bold.

• n = {5,10, 15, 20}: Number of tasks in a task set
• uR = {0.1, 0.2,0.3, 0.5}: Utilization of the recovery task
• U = U

Cς
+ Uς = {x/20 | 1 ≤ x < 20}: Total utilization

of the task set in normal mode
• P = {0.1, 0.2,0.5, 1.0}: Probability of a task being HI-

security task
The task set generation begins with a target value for

normal mode utilization given by U . Using the UUniFast
algorithm [5], we derive the set of task utilizations in normal
mode. The recovery task utilization in recovery mode is given
by the uR parameter. For each setting, we generate 1000 task
sets and present the results below.

Figure 1 reports the variation in acceptance ratios for
varying system utilizations under different recovery task uti-
lizations.
Observations. When applying EDF, it is seen in Figure 1 that,
the acceptance ratio begins to drop as U increases beyond
0.5, irrespective of the recovery task utilization. This can be
explained by the added pessimism to be considered by the
EDF algorithm in the recovery mode. As the recovery task
utilization increases, the performance further decreases. This
behavior can be attributed to the added workload contributed
by the increasing utilization of the recovery task.

When the EDF-VD algorithm is modified to schedule the
proposed task model, the performance follows a similar trend
as the EDF algorithm as shown in Figure 1. This pattern is
consistent for all values of the recovery task. Similar to EDF,
this observation can be attributed to the added pessimism in the
higher criticality level due to the re-execution in the recovery
mode. The pessimism arises from the need to cover the worst-
case scenarios where a task re-execution can be triggered.

V. CONCLUSION

We have presented SR3, a secure and resilient real-time
attack recovery model, scheduler, and analysis. This model
demonstrates that security criticality is an orthogonal dimen-
sion of criticality than has been studied in prior work on

mixed-criticality scheduling. Our model is an example of a
multi-mode mixed-criticality system, in which there are two
modes, normal and recovery, and tasks are either high- or low-
security criticality. Additionally, to facilitate recovery from a
security event, a recovery task executes during recovery mode.

To avoid pessimism when adapting existing MC analy-
sis, we developed a uniprocessor scheduling algorithm with
modified virtual deadline for each HI-security task, and pro-
vided utilization-based schedulability test. Finally, we exper-
imentally show that SR3 performs better than the existing
uniprocessor scheduling schemes such as EDF and EDF-VD
for mixed-criticality systems upon model transformation via
simulation on synthetic workload.

REFERENCES

[1] M. Abadi et al. Control-flow integrity. In ACM Conference on Computer
and Communications Security, CCS, 2005.

[2] M. Antonakakis et al. Understanding the mirai botnet. In USENIX
Security ’17. USENIX Association, Aug. 2017.

[3] S. Baruah et al. The preemptive uniprocessor scheduling of mixed-
criticality implicit-deadline sporadic task systems. In ECRTS ’12, 2012.

[4] N. B. Bellec et al. RT-DFI: Optimizing data-flow integrity for real-time
systems. In ECRTS ’22, 2022.

[5] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[6] A. Burns. Multi-model systems — an mcs by any other name. In 8th
International Workshop on Mixed Criticality Systems, 2020.

[7] N. Burow et al. Moving target defense considerations in real-time safety-
and mission-critical systems. In Proceedings of the 7th ACM Workshop
on Moving Target Defense, pages 81–89, 2020.

[8] Y. Du et al. Holistic Control-Flow protection on Real-Time embedded
systems with kage. In USENIX Security ’22, 2022.

[9] J. Fellmuth et al. Instruction caches in static WCET analysis of
artificially diversified software. In ECRTS ’18, 2018.

[10] M. Hasan et al. Exploring opportunistic execution for integrating
security into legacy hard real-time systems. In RTSS ’16. IEEE, 2016.

[11] M. Hasan et al. Contego: An adaptive framework for integrating security
tasks in real-time systems. ECRTS ’17, 2017.

[12] M. Hasan et al. A design-space exploration for allocating security tasks
in multicore real-time systems. In DATE ’18. IEEE, 2018.

[13] M. Hasan et al. Period adaptation for continuous security monitoring in
multicore real-time systems. In DATE ’20. IEEE, 2020.

[14] P. Holman and J. H. Anderson. Adapting pfair scheduling for symmetric
multiprocessors. Journal of Embedded Computing, 2005.

[15] G. Klein et al. seL4: Formal verification of an OS kernel. In SOSP,
2009.

[16] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46–61, Jan. 1973.

[17] J. S. Mertoguno et al. A physics-based strategy for cyber resilience
of cps. In Autonomous Systems: Sensors, Processing, and Security for
Vehicles and Infrastructure 2019, 2019.

[18] S. Nagarakatte et al. SoftBound: Highly compatible and complete spatial
memory safety for C. PLDI, 2009.

[19] C. Project. Memory safety, 2020.
[20] G. Serra et al. PAC-PL: Enabling control-flow integrity with pointer

authentication in FPGA SoC platforms. In RTAS ’22, 2022.
[21] H. Shacham. The geometry of innocent flesh on the bone: Return-into-

libc without function calls (on the x86). In CCS ’07, 2007.
[22] G. Thomas. A proactive approach to more secure code, 2019.
[23] S. Vestal. Preemptive scheduling of multi-criticality systems with

varying degrees of execution time assurance. In RTSS, 2007.
[24] R. J. Walls et al. Control-flow integrity for real-time embedded systems.

In ECRTS ’19, 2019.
[25] J. W. Wang et al. RT-TEE: Real-time system availability for cyber-

physical systems using ARM TrustZone. In IEEE S&P, 2022.
[26] B. C. Ward et al. The leakage-resilience dilemma. In ESORICS 2019,

page 87–106.
[27] J. Zhou et al. Silhouette: Efficient protected shadow stacks for embedded

systems. In USENIX Security ’20, 2020.

6

Mixed-Criticality Wireless Communication for
Robot Swarms

Sven Signer
Department of Computer Science

University of York
York, United Kingdom
sven.signer@york.ac.uk

Alan G. Millard
Department of Computer Science

University of York
York, United Kingdom
alan.millard@york.ac.uk

Ian Gray
Department of Computer Science

University of York
York, United Kingdom

ian.gray@york.ac.uk

Abstract—In recent years the mixed criticality systems model
has been adapted for use in shared-medium communication pro-
tocols, but it has not seen deployment into swarm robotics. This
paper discusses ongoing work in the application of such a model
to this domain, and argues for the benefits of such an approach. In
many applications, reliability of communications is essential for
the correct and safe operation of the robots. Given the inherently
unreliable nature of wireless inter-robot communications, this
paper argues for the application of timing- and criticality-aware
communication protocols to be able to provide more reliable
task-level performance of swarm robotics applications. In this
work we define two illustrative swarm applications with two
tasks at different criticality levels. Using simulation results we
show that in the presence of wireless faults, standard best-
effort protocols will cause application errors unpredictably, but a
mixed-criticality wireless protocol can maintain important tasks
at the cost of less important ones for longer.

Index Terms—real-time wireless, mixed-criticality, swarm com-
munication

I. INTRODUCTION

Distributed autonomous systems rely on wireless commu-
nications to implement their functionality. If such systems
are to be deployed in high-integrity environments, such as
autonomous vehicles, then it is necessary to be able to reason
about the performance of the system in situations where
such communications are not reliable. Existing approaches
in the field of swarm robotics rarely consider timing-aware
communication, instead relying on mechanisms such as self-
organisation and emergence for information propagation [1].
Failed communications can be corrected through retransmis-
sions, but these also reduce available bandwidth and can cause
further transmission failures. A standard best-effort protocol
like WiFi does not allow the system integrator to analyse
system performance ahead of time.

This paper argues that by implementing timing-aware com-
munications protocols and by adopting a mixed criticality
system model, it becomes possible to provide hard timing
guarantees within a specified fault model, and to reason about
system degradation in a controlled way when that model is
exceeded. Our results show this translates into better task-level
performance for an example swarm robotics application.

Section II begins by defining a motivating problem for
this work to address. We then introduce mixed criticality
in Section III and examine existing wireless protocols in

TPOS : ∀i, j ∈ {0..k} : Vi = Vj

TLED : ∀i, j ∈ {0..k} : LEDi = LEDj

V2V0

V3

V1

Vk

LEDk

LED1

LED0 LED2

LED3

Fig. 1. k robots, each having a velocity V and an LED colour. Task TLED

requires all nodes to show the same colour. Task TPOS requires all nodes to
move with the same velocity. At any given time, both conditions should be
satisfied.

section IV. We define our system model (Section V) and our
experiment in Section VI, followed by results (Section VII),
limitations (Section IX) and conclusions.

II. MOTIVATING PROBLEM

Consider an autonomous wireless swarm robotics platform
in which the robots have two tasks:

• TLED: Communicate to form a consensus about what
LED colour to display. Each agent may choose to ask
the swarm to display a different colour at any time, for
example as a response to external stimuli.

• TPOS : Coordinate to maintain a circle formation. Each
agent may choose to adjust the formation and the others
must maintain relative positioning.

This system has two metrics of quality: timing error for
task TLED, and positional error for task TPOS . The system
is trying to minimise both errors. Errors are discussed in
more detail in Section VI. Communications are wireless, and
so any given transmission has a probability of successful
transmission, which decreases as traffic volume increases (due
to collisions) and decreases as inter-agent distance increases
(see Section V). A naive approach to this problem simply has
each robot communicate with every other robot for either task,
retransmitting if a transmission fails. However, this means that
as the robots get further from each other, transmissions begin
to dominate the available bandwidth and errors increase.

If we now introduce the constraint that TPOS is a high-
integrity task that must be guaranteed to avoid the potential
for injury, we need to be able to guarantee a given level of
performance for TPOS . This guarantee becomes impossible (or
at least incredibly pessimistic) due to unbounded interference
from the rest of the system.

III. MIXED CRITICALITY SYSTEMS

Given the problem introduced in Section II, this work argues
that future autonomous swarm robotics systems should be
viewed as a mixed criticality system (MCS). The MCS system
model was initially motivated by the expectation of deadline
overruns caused by imprecise timing analysis, however in a
swarm robotics system a common source of issues is that
of wireless communication delays. Even in an otherwise
well-formed network, transient faults can cause unpredictable
sporadic delays to task execution.

In traditional automotive or avionics systems, criticality
levels are kept insulated from each other on dedicated control
units and networks to make it easier to demonstrate that lower-
criticality tasks cannot interfere with the execution of higher-
criticality tasks. In the motivating example from Section II,
this is not possible due to the shared communication medium.

This work uses the most commonly deployed form of MCS
in which the system has two criticality levels, LO and HI,
although many refinements have been made since [2]. In the
basic model, each task is assigned to one of these levels,
resulting in a set of LO tasks and a set of HI tasks. Each task
also has a WCET value (C) for each criticality level. A task’s
LO WCET (CLO) might come from a simple measurement-
based approach and so therefore may be optimistic. Its CHI

on the other hand might come from an analytical approach
and so is safe, but pessimistic. For all tasks, CLO < CHI .

Whilst this approach was initially developed in the context
of tasks executing on a CPU, it can be applied to wireless
communications [3]. This paper shows that by thinking of
the overall behaviour of a robot swarm in terms of criticality
levels, the system performance can be gracefully degraded (for
example as communication becomes less reliable) in a way
that allows key functionality to be retained for longer.

IV. RELATED WORK

Ad-hoc mesh networking is a well-studied problem in
the field of autonomous systems. Early work such as BAT-
MAN [4] looked at the problem of communicating nodes
with a topology that is not known a priori. However it only
provided limited support for mobility and little control over
traffic prioritisation.

Real-Time Wireless Multi-hop Protocol (RT-WMP) [5] was
a major expansion to the research space through the intro-
duction of a real-time wireless protocol that could support a
limited form of end-to-end guarantees on a multi-hop wireless
network. RT-WMP includes a significant consensus phase
in which nodes can coordinate to determine which has the
most important traffic and over what routes it should be sent.
This leads to predictable performance, but causes significant

bandwidth overheads and requires nodes to expend a lot of
power when compared to simpler protocols. Some of these
problems have been later addressed through Beluga [6] which
exploits flow periodicity to reduce coordination overheads,
although this work still assumes fixed traffic flows and cannot
support support simultaneous transmissions in different parts
of the network.

WirelessHART [7] is an extension of the HART protocol
focused on wired communication in industrial automation and
process control. It uses time-division multiple access (TMDA)
at the physical layer with centralised route planning. This
allows it to achieve excellent levels of predictability, but in
some situations it suffers from poor utilisation because it also
cannot support simultaneous transmissions.

Glossy [8], and the wireless protocols that build upon it
such as the Low-Power Wireless Bus [9] and Blink [10], use
a different approach that assumes no network topology infor-
mation is available. Instead, all packets are flooded through
the network using simultaneous retransmissions within a sin-
gle timeslot. With sub-microsecond clock synchronisation,
the frames interfere constructively rather than destructively.
Since network topology is not considered, Glossy requires
transmission slots sufficiently large for such a flood to reach
all nodes in the network. While this is acceptable for networks
with a small number of maximum hops, it prevents efficient
operation in larger networks. Further, the protocol cannot
handle simultaneous transmissions.

AirTight [11] is a decentralised mixed-criticality protocol
that provides real-time guarantees that are resilient to network
interference. Access to the network is mediated by a slot
table that is assigned ahead-of-time, but each node uses
local scheduling decisions to determine which frame is sent
during an assigned transmission slot. Unlike CPU scheduling
applications, where the criticality level influences the worst
case execution time, AirTight assumes that the size of a frame
is constant. Instead, it is the level of interference a task must
be able to endure that varies by criticality level. A “criticality-
aware” fault model bounds the maximum level of interference
for a given criticality level. The protocol then guarantees that
the worst-case response times computed at a given criticality
level will not be exceeded so long as the actual number of
transmission failures experienced does not exceed the value
predicted by the fault-model for that criticality level. If, at
runtime, the failure bound computed by the fault model at a
given criticality level is exceeded, the system moves to the next
higher criticality level. Nodes in high criticality mode drop
low criticality transmissions in order to increase the number
of slots available for the high criticality flows. AirTight allows
simultaneous transmissions [12], both from spatially separated
nodes on the same channel, and through the use of multiple
channels.

Inter-robot wireless communication in the field of swarm
robotics often defaults to protocols such as WiFi, ZigBee, and
Bluetooth. These all can offer potentially very high throughput
with excellent robustness, but they rely on protocol or MAC-
layer features like random backoff and retransmissions, and

result in priority inversion (where high-importance flows can
be interrupted or blocked by low-importance flows). Addi-
tional robustness is sometimes added at the application layer,
such as through distributed data structures that are resistant
to imperfect communication [13], but these are typically not
suitable for timing critical data. Prior work [14] illustrates how
realistic, i.e. imperfect, communications can prevent swarm
robotics applications from functioning correctly.

This paper will explore how swarm applications can fail
due to wireless communication without timing awareness, and
discuss how the application of AirTight and a mixed criticality
system model can aid robustness.

V. SIMULATED TRANSMISSION MODEL

In order to demonstrate the use of these models, we em-
ploy an established swarm robotics simulator, ARGoS [15].
The ARGoS simulator provides integrated support for radio
communication through the simple radio interface, but this
assumes perfect communications within a given range and
does not handle packet collisions. In order to better model
realistic communications, we have developed a custom radio
communication plugin using an alternative transmission model

We assume that each simulation step is equivalent to one
transmission slot, such that each node can only send or receive
a single frame during a simulation step. If a robot is able
to ‘hear’ multiple frames within a single slot, we define that
the frames interfere destructively such that no frame can be
correctly decoded.

Our model is such that the effective packet delivery rate of a
link is inversely proportional to the square of the distance be-
tween two nodes, and that successful or unsuccessful delivery
is determined independently for each link and transmission.
We note that is an extremely simple model which does not
capture the true complexity of real wireless communications.
Previous experiments [16]–[19] have produced conflicting
results, but generally show a weak correlation between node
distance and packet reception rates, which is highly dependent
on the specific testing environment.

Attempting to accurately model a wireless radio’s physical
layer and resulting radio performance is beyond the scope
of this paper, however our experiments do not rely on the
specifics of the fault model beyond determining when packets
are received. Rather we use this model to show how swarm
behaviour changes as packet reception rates decrease. There-
fore, we believe the results of the simulation should be broadly
applicable regardless of the simplification to the fault model.

Using this simulation, we compare the performance of
AirTight with two baseline protocols:

• Broadcast: Nodes broadcast each message a fixed number
of times using carrier sensing to reduce collisions.

• Point-to-Point: Nodes transmit messages to each other
node in turn, a CSMA/CA like protocol using carrier
sensing and random backoff between retransmissions
until an acknowledgement is received or a maximum
number of retries has been reached.

EPOS

Fig. 2. Circle formation showing positional error EPOS , the maximum
difference in distance from the circle’s central point of any two nodes.

A. AirTight Fault Model

If arbitrarily many transmissions can fail over an indefinite
time period, it is not possible to provide any timing guarantees.
Therefore, the AirTight protocol [11] requires the number of
failures within a time period to be bounded by a fault model
that is provided ahead of time during response time analysis.

When considering networks with stationary nodes, the orig-
inal AirTight specification considered failed transmission slots
as a result of external interference causing blackout periods.
Here, we instead consider failed transmission due to a reduced
packet delivery rate (PDR), presumably as a result of distance
between nodes.

Since the PDR is simply the delivery probability for a
single packet, and the delivery of each packet is defined to
be independent, our fault model must be probabilistic. The
probability of a given number of failed transmissions occurring
within a busy-period of t transmissions can be modelled using
a simple binomial distribution. For a given criticality level
L, minimum assumed PDR and a desired confidence bound,
the fault model F (L, t) computes a maximum number of
failed transmission slots as the smallest integer m satisfying
inequality 1, in which we ensure the desired confidence bound
is met by accumulating the probability of exactly k failures
occurring for all k ≤ m.

m∑

k=0

(
t

k

)
·
(
1− pdr(L)2

)k ·
(
pdr(L)2

)t−k ≥ conf(L) (1)

Note that the PDR is squared in the above equation to
account for lost acknowledgements, which are assumed to
occur with the same probability as lost data frames. We do not
consider dependent PDRs, i.e. blackout periods due to external
interference, in this model but note that it would be possible
to extend this fault model to include them. In the most basic
case, an additional fault-model accounting for static blackout
periods with a length and period could simply be summed to
the existing fault-model, albeit at the cost of some pessimism.

VI. EXPERIMENTAL SETUP

Building on the motivating problem in Section II, we
contrive a concrete instantiation. A set of 6 mobile nodes with
multicoloured LEDs are arranged in a circle facing outwards,

1m apart, and pre-programmed to assume the same initial LED
colour. To satisfy tasks TLED and TPOS , all nodes should
show the same LED colour and must move radially outward
at the same speed in order to maintain the circle formation.

The LED colour and movement speed is determined in a
decentralised manner by the nodes. Each node may change
the LED colour for the entire swarm if it has been at least
one second since it last initiated an LED colour change.
This reflects real-world tasks such as a swarm responding to
distributed sensing of an environment. When a node proposes
an LED colour change, the swarm must coordinate to change
to the new colour in unison within two seconds. Multiple
such colour changes can be queued to take effect at different
future times. If multiple nodes propose an LED colour change
for the same time, the conflict is deterministically resolved
by a predetermined static priority ordering. The movement
speed for the swarm is determined in an equivalent manner,
except that these events may only be generated once every
five seconds, and take effect after ten seconds. We assume that
each frame is only large enough to contain either exactly one
LED colour change message or one movement speed change
message.

The performance of the system is quantified by measuring
two errors: EPOS , the maximum difference in effective circle
radius of any two nodes, as shown in Figure 2, and ELED,
the number of nodes showing an incorrect LED colour. If all
nodes could communicate perfectly, EPOS and ELED would
remain zero.

In a real application, these changes would be triggered by
local sensing onboard the nodes. For the purposes of this
simulation, we simply assume that after the minimum inter-
arrival period has been reached, there is a uniform probability
of 2% per node per simulation step for LED changes, and a
uniform probability of 1% per node per simulation step for
movement speed changes. New LED colours are chosen as
a uniformly random RGB value, whereas movement speed is
chosen with each node having a bias towards a slower/faster
speed, such that positions will diverge if communication fails.

As in Section II, the task TPOS is a high-integrity task
that should be protected in the event of a system degradation.
The AirTight protocol allows this by setting the packet flows
of TPOS as high-criticality, while those of TLED as low-
criticality. The other two protocols have no notion of criti-
cality1, thus all packets are handled equally.

Since the circle setup results in a constantly increasing
distance between agents, the packet delivery ratio is constantly
decreasing according to our transmission model. Thus, re-
gardless of protocol, communication between the nodes will
eventually fail, causing EPOS to increase indefinitely. The
effectiveness of a protocol can therefore be determined by the
length of time that EPOS remains below a threshold value.

1Note that some carrier sense protocols have the notion of priority that
allows smaller inter-frame times for packets that need low latency. This is not
same as criticality which affects how the system degrades under failures.

Fig. 3. Node setup showing optimal routing and an example of possible
randomised routing.

A. AirTight

An AirTight deployment will analyse the flows and topology
ahead of time to ensure that flows are schedulable [11]. For this
example the protocol is set up with a slot-table of equal length
to the number of nodes, with each node assigned a single
unique transmission slot of 10ms. For each node, there are
LED and movement flows that begin at that node and proceed
around the outside of the circle. We assume that the system
integrator wants to prioritise movement accuracy, so assigns
LED flows to low-criticality and movement instructions to
high-criticality. The overall LED flow is partitioned with
the manually selected per-hop deadlines of 190ms, 310ms,
370ms, 430ms, and 550ms (giving an end-to-end deadline
of 1850ms), whereas the movement flow is partitioned with
the manually selected per-hop deadlines of 1570ms, 1750ms,
1870ms, 1990ms, and 2110ms (giving an end-to-end deadline
of 9290ms). Note that these end-to-end deadlines are within
the timing requirements as specified at the beginning of this
section.

The AirTight protocol in this scenario has the inherent
advantage that it has been pre-programmed with a priori
knowledge of the network topology. To observe its behaviour
when this advantage is removed we also test the AirTight
protocol where the ordering of the nodes has been randomised,
as shown in Figure 3.

The fault model (described in Section V-A) is configured
to require confidence bound of 99% given a minimum PDR
of 96.3% (corresponding to a distance between nodes of 2
metres) in low criticality mode, and a confidence bound of
99.999% given a minimum PDR of 79.2% (corresponding to
a distance between nodes of 3 meters) in high criticality mode.

B. Broadcast

The broadcast protocol is setup to transmit each message 13
times. This number is chosen as the maximum fixed number
of transmissions without exceeding the available bandwidth.

C. Point-to-Point

The point-to-point protocol is setup to transmit each mes-
sage to each other node in turn, until it receives and acknowl-
edgement frame or it has sent the frame 5 times. This maxi-
mum number of transmission was determined experimentally
as a value that suitably balances the need for retransmissions
without causing excessive collisions or triggering a continuous
buildup of frames in the transmission buffers.

A/O A/R B P

0

10

20

30

40

50

60
E
P
O
S

(c
m

)

n = 30s

A/O A/R B P

n = 60s

A/O A/R B P

n = 90s

A/O A/R B P

n = 120s

A/O A/R B P

0

50

100

150

200

250

E
P
O
S

(c
m

)

n = 150s

A/O A/R B P

n = 180s

A/O A/R B P

n = 210s

A/O A/R B P

n = 240s

Fig. 4. EPOS after n seconds for simulated nodes using the AirTight protocol
with optimal (A/O) and randomised (A/R) routing, Broadcast protocol (B),
and Point-to-point protocol (P) over 10 different random seeds. Note that the
y-axis scaling changes between rows.

0s 30s 60s 90s 120s 150s 180s 210s 240s
0

1

2

3

4

5

E
L
E
D

AirTight (Optimal Routing)

0s 30s 60s 90s 120s 150s 180s 210s 240s

AirTight (Randomised Routing)

0s 30s 60s 90s 120s 150s 180s 210s 240s
0

1

2

3

4

5

E
L
E
D

Broadcast

0s 30s 60s 90s 120s 150s 180s 210s 240s

Point-to-Point

Fig. 5. Median ELED after n seconds over for 10 different random seeds.
Shaded area shows range from minimum to maximum ELED value at the
given step over the runs.

VII. SIMULATION RESULTS

The simulation results for EPOS demonstrate that all pro-
tocols are able to keep EPOS = 0 for at least 30 seconds of
simulation time (see Figure 4). After 60 seconds, both of the
comparison protocols have accumulated small positional errors
in some of the simulation runs, and by 120 seconds both show
an error in the minimum case. The AirTight implementation
with optimal routing maintains EPOS until after 180s. We
note that by 170 seconds the circle radius has exceeded 4m
in all simulation runs, meaning the input assumptions to the
fault model (maximum distance of 3m) have been significantly
exceeded. Thus, the errors that show in later time steps are as
a result of “incorrect” input data rather than a violation of
the protocols timing guarantees. The AirTight implementation
with randomised routing shows a very small but non-zero
maximum error at 90 seconds and larger errors from 120
seconds.

For the lower criticality flow, both comparison protocols
show an initial LED error after approximately 30 seconds,
with the first instance of a median error greater than zero after
60 and 100 seconds for the “point to point” and “broadcast”
protocols respectively. With optimised routing the AirTight
protocol first shows an LED error after 50s, with a non-zero
median first occurring after 90s. With randomised routing the

first LED error occurs almost immediately2, and regular errors
start after 40s.

The AirTight protocol results in both higher median and
maximum LED error values, particularly in later simulation
steps. The protocol has allowed the system designer to pri-
oritise motion control messages in the presence of errors,
resulting in lower positional error at the cost of less critical
tasks.

VIII. FLOCKING APPLICATION

The circle problem clearly demonstrates the advantages
that a mixed criticality system model can bring to unreliable
shared-medium wireless communications in a swarm robotics
context. Rather than causing unpredictable application-level
faults, the mixed criticality model can be used to maintain
service for longer in tasks of most importance. To illustrate
this in a more realistic application, we present a flocking
system in which a group of 10 nodes need to communicate to
form and move as a flock. Each node is assumed to know its
own position and orientation through some localisation system.
Every five seconds, node should transmit their location and
orientation to all other nodes such that each can compute it is
own velocity to maintain its position in the flock [20].

We assume that each node is also performing some envi-
ronmental sensing task, that generates up to three data frames
per second that should be sent to an a priori designated sink
node. We again assume that mobility control is the more
important task, and so define this as a low priority flow
in the AirTight implementation. We use the same AirTight
fault model configuration as for the circle problem, but here
define point to point flows from each node to all other
nodes for communication. In the broadcast implementation
the maximum number of retransmissions is reduced to 3, as
this is here the maximum value while ensuring the available
bandwidth is not exceeded. The configuration of point-to-point
implementation is unchanged.

At each simulation time step, we sum the velocity vectors
of all nodes, and compute the mean length of this vector
over each simulation run of 30s. Since these vectors add
destructively if nodes are moving in different directions (i.e.
not as a flock), this value serves as proxy for the stability
of flock. Since the distances between nodes once a flock has
been formed remain relatively small, we further scale down the
packet delivery rate of the fault model presented in section V
by a constant factor. The results present in figure 6 show that
AirTight is able to maintain an almost optimal flock velocity of
approximately 6 cm/s at lower PDR scaling values than the two
baseline comparison protocols. We note that this advantage is,
as in the circle problem, a result of prioritising the positional
information. As shown in figure 7, the performance of the data
collection task under AirTight decreases rapidly when packet
transmission is made less reliable.

2We note that with a starting radius of 1m, the maximum distance between
robots does not exceed the input to fault model. This early error is the other
1% from the requested 99% confidence bound provided to the low criticality
fault model.

A B P
0

2

4

6

PDR ∗= 1.0

A B P

PDR ∗= 0.8

A B P

PDR ∗= 0.6

A B P

PDR ∗= 0.4

A B P

PDR ∗= 0.2

Fig. 6. Mean length of summed node velocity vectors at each time step
over 10 simulation runs with different random seeds. PDR is modified by a
constant factor from 1.0 to 0.2.

A B P
0

2000

4000

6000

8000

PDR ∗= 1.0

A B P

PDR ∗= 0.8

A B P

PDR ∗= 0.6

A B P

PDR ∗= 0.4

A B P

PDR ∗= 0.2

Fig. 7. Mean number of data samples received by the designated sink node
over 10 simulation runs (error bars show min/max value). Note that broadcast
protocol results in a lower number of received data samples even under good
network conditions, as a lack of timing guarantees on delivery mean some
frames are not yet delivered by the end of the simulation.

IX. LIMITATIONS AND FUTURE WORK

In order to get the most benefit from the AirTight proto-
col [11], it requires a priori knowledge of the network topol-
ogy and slot tables in order to determine packet routing and
perform schedulability analysis of the flows. This requirement
significantly impacts the ability of AirTight to be applied in
many swarm robotics applications. The illustrated application
in this paper presents a best case scenario since the network
topology remains constant. The degraded performance ob-
served when the node positions are randomised demonstrates
the impact of the network topology not matching the prior
assumptions, which would also occur if robots were permitted
to move in ways that changes the network topology. In order to
be able to apply the AirTight protocol to more general swarm
robotics applications, the protocol must be extended such that
routing can be updated at runtime. We intend to address this
extension in future work.

X. CONCLUSION

In this paper we have demonstrated the value of using
mixed criticality timing-aware wireless protocols in swarm
robotics applications. Wireless communications will always
be subject to error, but protocols such as AirTight allow the
system designer to trade off errors intelligently, according to
the relative importance of the various tasks in the system.
Furthermore, such protocols allow timing behaviour to be anal-
ysed ahead of time, which allows guarantees to be made as to
the timing correctness of a swarm robotics application within
parameters provided by a fault model. In future work we intend
to extended existing real-time protocols like AirTight in ways
that allow it to specifically target swarm robotics applications.

REFERENCES

[1] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: a review from the swarm engineering perspective,” Swarm
Intelligence, vol. 7, no. 1, pp. 1–41, 2013.

[2] A. Burns and R. I. Davis, “A survey of research into mixed criticality
systems,” ACM Comput. Surv., vol. 50, nov 2017.

[3] C. Xia, X. Jin, L. Kong, and P. Zeng, “Bounding the demand of mixed-
criticality industrial wireless sensor networks,” IEEE Access, vol. 5,
pp. 7505–7516, 2017.

[4] D. Johnson, N. Ntlatlapa, and C. Aichele, “Simple pragmatic approach
to mesh routing using batman,” in 2nd IFIP International Symposium
on Wireless Communications and Information Technology in Developing
Countries, 2008.

[5] D. Tardioli and J. L. Villarroel, “Real time communications over 802.11:
Rt-wmp,” in 2007 IEEE international conference on mobile adhoc and
sensor systems, pp. 1–11, IEEE, 2007.

[6] D. Tardioli, “A wireless communication protocol for distributed robotics
applications,” in 2014 IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC), pp. 253–260, 2014.

[7] I. E. Commission et al., “Industrial networks—wireless communication
network and communication profiles—wirelesshart (iec 62591: 2016),”
IEC: Geneva, Switzerland, vol. 3, pp. 1–1043, 2016.

[8] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with glossy,” in Proceedings of the
10th ACM/IEEE International Conference on Information Processing in
Sensor Networks, pp. 73–84, 2011.

[9] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power
wireless bus,” in Proceedings of the 10th ACM Conference on Embedded
Network Sensor Systems, SenSys ’12, (New York, NY, USA), p. 1–14,
Association for Computing Machinery, 2012.

[10] M. Zimmerling, L. Mottola, P. Kumar, F. Ferrari, and L. Thiele, “Adap-
tive real-time communication for wireless cyber-physical systems,” ACM
Trans. Cyber-Phys. Syst., vol. 1, feb 2017.

[11] A. Burns, J. Harbin, L. Indrusiak, I. Bate, R. Davis, and D. Griffin, “Air-
tight: A resilient wireless communication protocol for mixed-criticality
systems,” in 2018 IEEE 24th International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), pp. 65–
75, 2018.

[12] J. Harbin, A. Burns, R. I. Davis, L. S. Indrusiak, I. Bate, and D. Griffin,
“The airtight protocol for mixed criticality wireless cps,” ACM Trans.
Cyber-Phys. Syst., vol. 4, dec 2019.

[13] C. Pinciroli, A. Lee-Brown, and G. Beltrame, “A tuple space for data
sharing in robot swarms,” EAI Endorsed Transactions on Collaborative
Computing, vol. 2, 5 2016.

[14] M. Selden, J. Zhou, F. Campos, N. Lambert, D. Drew, and K. S. J. Pister,
“Botnet: A simulator for studying the effects of accurate communication
models on multi-agent and swarm control,” in 2021 International
Symposium on Multi-Robot and Multi-Agent Systems (MRS), pp. 101–
109, 2021.

[15] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,
N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M.
Gambardella, and M. Dorigo, “ARGoS: a modular, parallel, multi-engine
simulator for multi-robot systems,” Swarm Intelligence, vol. 6, no. 4,
pp. 271–295, 2012.

[16] A. Cerpa, N. Busek, and D. Estrin, “Scale: A tool for simple connectivity
assessment in lossy environments,” tech. rep., September 5 2003.

[17] J. Zhao and R. Govindan, “Understanding packet delivery performance
in dense wireless sensor networks,” in Proceedings of the 1st Interna-
tional Conference on Embedded Networked Sensor Systems, SenSys ’03,
(New York, NY, USA), p. 1–13, Association for Computing Machinery,
2003.

[18] N. Baccour, A. Koubâa, M. Ben Jamâa, D. do Rosário, H. Youssef,
M. Alves, and L. B. Becker, “RadiaLE: A framework for designing and
assessing link quality estimators in wireless sensor networks,” Ad Hoc
Networks, vol. 9, no. 7, pp. 1165–1185, 2011.

[19] K. Brun-Laguna, A. L. Diedrichs, D. Dujovne, R. Léone, X. Vilajosana,
and T. Watteyne, “(not so) intuitive results from a smart agriculture
low-power wireless mesh deployment,” in Proceedings of the Eleventh
ACM Workshop on Challenged Networks, CHANTS ’16, (New York,
NY, USA), p. 25–30, Association for Computing Machinery, 2016.

[20] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” SIGGRAPH Comput. Graph., vol. 21, p. 25–34, aug 1987.

Precise Scheduling Mixed-Criticality Gang Tasks
with Reserved Processors

Tianning She
Department of Computer Science

Texas State University
San Marcos, TX, USA

t s374@txstate.edu

Zhishan Guo
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
zguo32@ncsu.edu

Kecheng Yang
Department of Computer Science

Texas State University
San Marcos, TX, USA

yangk@txstate.edu

Abstract—To mitigate the analytic pessimism that is often
necessary to provide the worst-case guarantees for real-time
systems, mixed-criticality (MC) scheduling has been proposed,
where a task parameter may be associated with multiple esti-
mates corresponding to multiple system runtime modes. While
a large body of work on MC scheduling is directed at dropping
or degrading low-critical tasks at the mode switch, a recent
model, called precise MC scheduling, aims at preserving the
full execution of all tasks instead. In precise MC scheduling,
the additional workload due to high-critical tasks at the mode
switch should be dealt with by increasing the capability of the
processing platform. In this paper, we investigate the problem
of precise MC scheduling of gang tasks, which may require
simultaneously occupying multiple processors to commence any
execution. In particular, we focus on the global earliest-deadline-
first with virtual deadlines (GEDF-VD) scheduling. We derive
a sufficient schedulability test for precise scheduling MC gang
tasks by GEDF-VD. By the schedulability test, we also present
an analysis of how many processors can be safely reserved in a
given system.

Index Terms—mixed-criticality tasks, precise scheduling, gang
tasks, virtual deadlines.

I. INTRODUCTION

In order to provide the worst-case guarantees for real-time
systems, task parameters, such as the execution time, for
schedulability analysis are usually estimated with significant
pessimism, which results in less efficient runtime performance.
Mixed-criticality (MC) scheduling has been proposed to mit-
igate such pessimism, where the worst-case execution time
(WCET) of a task may be associated with multiple estimates
corresponding to multiple system runtime modes.

In particular, the research attention in MC scheduling has
often focused on the two-mode setting, where a mode switch
is triggered by a high-critical task overrunning its smaller esti-
mate. In the majority of existing work on MC scheduling, once
a mode switch is triggered by such one or more high-critical
tasks, the low-critical tasks are (fully or partially) sacrificed in
order to accommodate the additional workload by those high-
critical tasks. More recently, a new direction, called precise
MC scheduling, has been proposed and investigated [8]. In the
precise MC scheduling paradigm, after a mode switch, low-
critical tasks continue to execute up to their WCET estimates
as they do before the mode switch. In the meanwhile, the
additional workload by the high-critical tasks are supposed to

be covered by increasing the executing platform capacity, e.g.,
boosting the speed of the processor [8].

Besides processor speed, increasing the number of available
processors on a multiprocessor platform is another natural
way for increasing capacity. In other words, in the normal
mode, a certain number of processors are reserved and only
the remaining number of processors are deemed available
for the real-time tasks of our interest. Upon a mode switch,
these reserved processors become available and dedicated to
the real-time tasks so that the executing platform capacity
is boosted from the real-time tasks’ point of view. Such
reserved processors in the normal mode could serve for several
different purposes, such as to enter a sleep state for power and
energy benefits, to be devoted to non-real-time tasks for spatial
separation between real-time and non-real-time tasks (the latter
will be dropped or deprioritized upon a mode switch), etc.,
depending on the scenarios and needs of the system.

In this precise MC scheduling scheme with reserved proces-
sors, it is the number of processors that varies. Compared to
traditional sequential tasks, parallel tasks are naturally more
tuned to this particular system parameter. In this paper, we fo-
cus on one particular kind of parallel tasks, namely the (rigid)
gang task model, where a task may require simultaneously
occupying multiple processor to commence any execution.
The real-time scheduling of gang tasks have received some
attention [24, 16, 17, 14]. It has also been studied in the context
of MC scheduling [9] but only in the conventional sense (i.e.,
dropping tasks upon a mode switch).
Contributions. In this paper, we present the first study on the
precise MC scheduling of gang tasks. With a certain number of
reserved processors that are hidden from the real-time tasks
in the normal mode but are able to fully dedicate to real-
time tasks upon a mode switch, we formally define a specific
scheduling problem in this direction. We then devise a virtual-
deadline based scheduling algorithm to address this problem,
and present a schedulability test for this algorithm. By the
schedulability test, we also present an analysis of how many
processors can be safely reserved in a given system.
Organization. In the rest of this paper, we introduce our
system model and problem statement (Sec. II), present a
common deadline-based scheduling algorithm for general gang
tasks and its variant by virtual deadlines for MC gang tasks

(Sec. III), provide a proof and analysis for our schedulability
test (Sec. IV), briefly survey related work (Sec. V), and
conclude (Sec. VI).

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the sporadic gang task model, which differs
from the conventional sporadic task model by allowing a single
task to simultaneously occupy multiple processors for execu-
tion. Furthermore, the allowed parallelism can be categorized
as follows [17]: a job (invocation of a task) is

• rigid if the number of processors assigned to this job is
specified externally to the scheduler a priori, and does
not change throughout its execution;

• moldable if the number of processors assigned to this
job is determined by the scheduler, and does not change
throughout its execution

• malleable if the number of processors assigned to this
job can be changed by the scheduler during the job’s
execution.

In this paper, we focus on the rigid parallelism model.
Specifically, we consider a system consisting of n implicit-

deadline sporadic MC gang tasks T = {τ1, τ2, · · · , τn}, where
each task τi has a rigid parallelism of mi processors. Each
task τi is invoked recurrently with a minimum separation of
Ti time units. Each invocation is called a job of τi, and we
use τi,j to denote the jth job of τi. Ti is called the period
of τi, and we restrict our attention to implicit deadlines. In
other words, Ti is also the relative deadline for each task τi,
and every job of τi has an absolute deadline Ti time units
after its release. The WCET of each task τi is estimated a
two criticality levels: a low-criticality (L-) estimate CL

i and
a high-criticality (H-) estimate CH

i , where it is assumed that
∀i, 0 < CL

i ≤ CH
i ≤ Ti. Furthermore, if CL

i = CH
i for task τi

so that τi cannot trigger a mode switch as to be described next,
then we say τi is a LO-task; by contrast, if CL

i < CH
i for task

τi so that τi could trigger a mode switch as to be described
next, then we say τi is a HI-task. We denote the set of LO-
tasks (HI-tasks, respectively) by TLO (THI, respectively). We
also refer to a job of a LO-task (HI-task, respectively) as LO-
job (HI-job, respectively) for short. In summary, an implicit-
deadline MC sporadic gang task τi is specified by a 4-tuple
(CL

i , C
H
i ,mi, Ti).

Reserving processors and mode switch. We consider a mul-
tiprocessor platform consisting of MH identical processors,
each of which has a normalized speed 1.0. In the runtime, if
the L-estimates are respected, i.e., all jobs are finished within
their L-WCETs, then we say the system is in L-mode; if the L-
estimates are exceeded, i.e., some jobs need to execute beyond
their L-WCETs and up to their H-WCETs, then we say the sys-
tem is in H-mode. Note that the H-estimates are assumed to be
always respected. In other words, any job that has cumulatively
executed for its H-WCET, i.e., CH

i , yet still not completed, is
considered as erroneous and would be terminated immediately.
That is, only HI-tasks, for which CL

i < CH
i , could trigger a

mode switch. The system begins with L-mode and the amount
of execution completed for each job is being monitored during

runtime. If any job has cumulatively executed for its L-WCET,
i.e., CL

i , but still requires further execution, then the system
is immediately notified and switched to H-mode. The system
can recover to L-mode once all processors become idle. We
require that only ML, where ML < MH , processors are used
to actively execute tasks in T in L-mode, while the remaining
Mδ = (MH − ML) processors are reserved. Nonetheless,
once the system is switched to H-mode, all MH processors
are devoted to execute tasks in T .

Note that, in contrast to the majority of existing works on
MC scheduling, in this work no task is entirely or partially
dropped upon a mode switch, and every job must meet its
absolute deadline in any system mode. The difference between
the two WCET estimates upon mode switch, i.e., CH

i − CL
i ,

is compensated by the additional Mδ active processors.
In this paper, we assume that the preemption and migration

overheads, e.g., due to memory interference, are negligible. Or,
equivalently, we assume these overheads are pessimistically
taken into account in the WCET estimates.

Moreover, we denote the utilization of a task τi in L- and
H-modes, respectively, by

uL
i =

CL
i ·mi

Ti
and uH

i =
CH

i ·mi

Ti
.

Since CL
i = CH

i holds for every LO-task, it also holds uL
i =

uH
i for such task. We further denote the total utilization of the

set of LO-tasks and the set of HI-tasks in L- and H-modes,
respectively, by

ULO =
∑

τi∈TLO

uL
i =

∑

τi∈TLO

uH
i ,

UL
HI =

∑

τi∈THI

uL
i , and UH

HI =
∑

τi∈THI

uH
i .

We further denote the total utilization of all tasks in L- and
H-modes, respectively, by

UL =
∑

i

uL
i = ULO+UL

HI and UH =
∑

i

uH
i = ULO+UH

HI .

Problem Statement. We address the problem of scheduling
the MC rigid Gang tasks on MH unit-speed processors to
meet all deadlines in all scenarios with the potential of
reserving Mδ processors, where M δ = MH − ML > 0.
We say the system is precise-MC schedulable if all deadlines
are guaranteed to be met and the following constraints are
respected.

• Tasks in τ only execute on ML processors if all jobs
finish within CL

i time units of execution;
• Tasks in τ may execute on all the MH processors if a

any job (of a HI-task) executes for more than CL
i time

units (yet finishes within CH
i time units of execution).

III. SCHEDULING MC GANG TASKS

In this section, we propose an earliest-deadline-first (EDF)
based scheduling algorithm to address the precise MC schedul-
ing problem of gang tasks, which has been formalized in the
prior section.

Algorithm 1: Selecting Jobs to Schedule under GEDF
input : Ready(t), which is the ready job set at time t
output: Sched(t), which is the scheduled job set at time t

Sched(t)← ∅
for each τi,j ∈ Ready(t) in deadline increasing order do

if
∑

τk,ℓ∈Sched(t) mk ≤M −mi then

Sched(t)← Sched(t) ∪ {τi,j}
end

end

A. GEDF Scheduling for Gang Tasks

We consider the preemptive global EDF (GEDF) schedul-
ing algorithm for ordinary (non-MC) gang tasks as follows1:

Definition 1. Under GEDF scheduling, the priority of each
job is determined by its deadline — the earlier the deadline,
the higher the priority. We also assume deadline ties are broken
arbitrarily but consistently, and therefore there is no priority
ties while deadline ties may exist. Letting Ready(t) denote
the set of ready jobs at an arbitrary time instant t, the set
of jobs Sched(t) being scheduled at time t is determined by
Algorithm 1. mk is the degree of parallelism of τk, which has
a job in Sched(t). Please note that, in practice, Algorithm 1
does not need to be evaluated at every time instant but only
needs to be invoked when a job is completed and when a new
job is released.

Please note that the GEDF scheduling cannot be defined by
simply considering the summation of parallelism of all ready
jobs with higher priorities, but rather it needs to go through
Algorithm 1. This is because some higher-priority (but not
the highest) ready jobs may not be scheduled due to lack of
available processors while some lower-priority ones with less
parallelism may actually be scheduled.

Furthermore, an important parameter ∆i for a gang task τi
under GEDF scheduling was introduced in [14] and is defined
as follows.

Definition 2. Let ∆i denote the maximum possible number of
idle processors at any time during τi’s non-executing intervals
in which τi has pending jobs but does not execute. In other
words, if τi is not being executing but has pending jobs, the
number of idle processors is at most ∆i.

Clearly, (mi − 1) would be a safe upperbound on ∆i.
Nonetheless, a dynamic programming algorithm has been
introduced in [14] to calculate ∆i in a more accurate manner.
This ∆i identification algorithm runs in polynomial time with
a time complexity of O(M2 ·n), where M is the total number
of available processors and n is the number of gang tasks.

With pre-calculating the ∆i parameter for every task prior to
runtime for any given (non-MC) gang task system, a sufficient
schedulability test has been proven in [14] as follows.

1This formal description of GEDF for gang tasks was introduced in [15].

Theorem 1 (Theorem 2 in [14]). A (non-MC) gang task sys-
tem, where each task is specified by (Ci,mi, Ti), is schedulable
on M identical processors by GEDF, if

∀i, USUM ≤ (M −∆i)(1−
ui

mi
) + ui (1)

where
ui =

Ci

Ti
and USUM =

∑

i

ui.

B. Algorithm GEDF-VD for MC Gang Tasks

With the prior work on GEDF scheduling of non-MC gang
tasks as discussed above, we introduce a virtual-deadline-
based scheduling algorithm, GEDF-VD, to address the precise
MC scheduling problem considered in this paper.

Under GEDF-VD, a system wide constant x is selected such
that 0 < x < 1. Each task is associated to a relative virtual
deadline of x · Ti, in addition to the relative actual deadline
Ti. That is, every job of task τi has a virtual deadline at x ·Ti

time units after its arrival time and has an actual deadline at
Ti time units after its arrival. Note that, because under precise
MC scheduling LO-tasks are not dropped in the H-mode, the
virtual-deadline setting does also apply to LO-tasks as well as
HI-tasks. Then, in the runtime, GEDF is applied to schedule
all tasks by taking virtual deadlines as deadlines in the L-
mode and taking actual deadlines as deadlines in the H-mode,
respectively.

Recall that for non-MC gang task set, we have a ∆i param-
eter that can be obtained before runtime. The ∆i identification
algorithm from [14] needs to take the required parallelism mi

for every task and the total number of available processors M
as inputs. In the problem considered in this paper, although
mi remains the same in the L- and H-modes for every task τi,
the total number of available processors does differ in the two
modes, being ML and MH in L- and H-modes, respectively.
Therefore, we need to apply the ∆i identification algorithm
twice, and then for each task τi, we obtain ∆L

i and ∆H
i for

L- and H-modes, respectively.
Having ∆L

i and ∆H
i for every task, we claim the following

sufficient schedulability test for GEDF-VD and this test is to
be proven next in Sec. IV.A.

A set of precise MC gang tasks with implicit deadlines
are schedulable by GEDF-VD using at most ML pro-
cessors in the L-mode and using at most MH processors
in the H-mode, if

KL +KH ≤ 1,

where

KL = max
i

{
miU

L + (ML −∆L
i −mi)u

L
i

mi · (ML −∆L
i)

}

KH = max
i

{
miU

H + (MH −∆H
i −mi)u

H
i

mi · (MH −∆H
i)

}
,

so that scaling factor x for setting virtual deadlines in
GEDF-VD can be (arbitrarily) chosen from the range

[KL, 1−KH].

IV. PRECISE-MC SCHEDULABILITY ANALYSIS

In this section, we first prove the correctness of the schedu-
lability presented in the prior section, with given ML and
MH (and therefore given ∆L

i and ∆H
i). Then, we provide a

method to obtain a safe lower bound on ML that guarantees
the schedulability for given task system and given MH .

A. Schedulability Test

To derive the schedulability test, we consider the schedula-
bility in L- and H-modes, respectively, in the following two
lemmas. We first derive a sufficient schedulability condition
for L-mode (Lem. 1). Then, assuming the schedulability in
L-mode, we derive a sufficient schedulability condition for H-
mode (Lem. 2). They together result in Thm. 2.

Lemma 1. Under GEDF-VD scheduling, all (LO- and HI-)
tasks must meet their virtual deadlines in L-mode, if

∀i, x ≥ miU
L + (ML −∆L

i −mi)u
L
i

mi · (ML −∆L
i)

.

Proof. In L-mode, tasks are scheduled by their virtual dead-
lines. By treating the relative virtual deadline as both the
relative deadline and the period, every task τi in L-mode can
be viewed as a (sporadic, implicit-deadline) non-MC gang task
specified as (CL

i ,mi, xTi). Under this view, the utilization of
each task τi is

CL
i

xTi
=

uL
i

x
,

and the total utilization is
∑

i

CL
i

xTi
=

1

x
·
∑

i

CL
i

Ti
=

UL

x
.

Therefore, by Thm. 1, these non-MC gang tasks must meet
their deadlines under GEDF, i.e., original MC-gang tasks must
meet their virtual deadlines in L-mode, if

∀i, U
L

x
≤ (ML −∆L

i)(1−
uL
i

x

mi
) +

uL
i

x
(2)

Given the facts that 0 < x < 1, mi > 0, and ∆L
i < ML,

(2) ⇔∀i, U
L

x
≤ ML −∆L

i − (
ML −∆L

i

mi
− 1) · u

L
i

x

⇔∀i, miU
L + (ML −∆L

i −mi)u
L
i

mix
≤ ML −∆L

i

⇔∀i, x ≥ miU
L + (ML −∆L

i −mi)u
L
i

mi · (ML −∆L
i)

.

Thus, the lemma follows.

Lemma 2. Under GEDF-VD scheduling, assuming all virtual
deadlines are met in L-mode, all (LO- and HI-) tasks must meet
their actual deadlines in H-mode, if

∀i, x ≤ 1− miU
H + (MH −∆H

i −mi)u
H
i

mi · (MH −∆H
i)

.

Proof. By assuming all virtual deadlines are met in L-mode,
it follows that the first job that reaches its virtual deadline but

has not completed must trigger a mode switch. As a result,
any job of τi that is released in L-mode has not completed by
the mode switch must have its actual deadline (as well as next
job release of τi) at least (1−x)Ti time units after the mode-
switch time instant. In the meanwhile, every job of τi cannot
execute for more than CH

i time units in any circumstance
and all subsequent releases in H-mode must separate by Ti >
(1 − x)Ti time units, according to the task model. So, by
treating any unfinished job at the mode switch as a new job
release at the mode-switch time instant, every task τi in L-
mode can be viewed as a (sporadic, implicit-deadline) non-
MC gang task specified as (CH

i ,mi, (1 − x)Ti). Under this
view, the utilization of each task τi is

CH
i

(1− x)Ti
=

uH
i

1− x
,

and the total utilization is

∑

i

CH
i

(1− x)Ti
=

1

1− x
·
∑

i

CH
i

Ti
=

UH

1− x
.

Therefore, by Thm. 1, these non-MC gang tasks must meet
their deadlines under GEDF, i.e., original MC-gang tasks must
meet their actual deadlines in H-mode, if

∀i, UH

1− x
≤ (ML −∆L

i)(1−
uH
i

1−x

mi
) +

uH
i

1− x
(3)

Given the facts that 0 < x < 1, mi > 0, and ∆H
i < MH ,

(3) ⇔∀i, UH

1− x
≤ MH −∆H

i − (
MH −∆H

i

mi
− 1) · uH

i

1− x

⇔∀i, miU
H + (MH −∆H

i −mi)u
H
i

mi(1− x)
≤ MH −∆H

i

⇔∀i, 1− x ≥ miU
H + (MH −∆H

i −mi)u
H
i

mi · (MH −∆H
i)

⇔∀i, x ≤ 1− miU
H + (MH −∆H

i −mi)u
H
i

mi · (MH −∆H
i)

.

Thus, the lemma follows.

Theorem 2. An MC gang task system is precise-MC schedu-
lable under GEDF-VD on MH processors with M δ = (MH −
ML) processors reserved in L-mode, if

KL +KH ≤ 1,

where

KL = max
i

{
miU

L + (ML −∆L
i −mi)u

L
i

mi · (ML −∆L
i)

}

KH = max
i

{
miU

H + (MH −∆H
i −mi)u

H
i

mi · (MH −∆H
i)

}
.

Proof. KL + KH ≤ 1 implies that [KL, 1 − KH] is not an
empty set. Also, it is evident that both KL > 0 and KH >

0, so [KL, 1 − KH] ⊂ (0, 1). Therefore, a valid x can be
(arbitrarily) selected from [KL, 1−KH]. Note that

x ≥ KL ⇒ ∀i, x ≥ miU
L + (ML −∆L

i −mi)u
L
i

mi · (ML −∆L
i)

and

x ≤ 1−KH ⇒ ∀i, x ≤ 1− miU
H + (MH −∆H

i −mi)u
H
i

mi · (MH −∆H
i)

.

By Lem. 1 and Lem. 2, the theorem follows.

B. A Safe Lower Bound on ML for Schedulability
We have already established a schedulability test for a given

task system with given ML and given MH . Nonetheless, the
value of ML may not always be fixed in a prior but its proper
setting may be a question for the system designer, where the
system workload specification (T) and the platform maximum
capacity (MH) are provided.

Under such a setting, KH can still be obtained a priori, as
T and MH (and therefore, ∆H

i) are given. Nonetheless, to
evaluate the schedulability condition, i.e., KL ≤ 1 − KH , it
is not only ML that varies— each ∆L

i could also be different
under different ML, and it is not a closed-form representation
by ML. One way to find an ML that guarantees schedulability
is to enumerate all possible values of ML and to apply the
schedulability test for each case. Alternatively, the following
theorem directly provides a safe lower bound on ML that
guarantees the schedulability for certain systems.

Theorem 3. For any MC gang task system where

∀i, (1−KH)mi > ui, (4)

it must be precise-MC schedulable under GEDF-VD, if

ML ≥ max
i

{
mi(U

L − uL
i)

(1−KH)mi − uL
i

+mi − 1

}
. (5)

Proof. Our goal is to show that the lower bound on ML

specified in this theorem is sufficient to imply KL+KH ≤ 1,
which is the schedulability test.

From (5), it directly follows that

∀i,ML ≥ mi(U
L − uL

i)

(1−KH)mi − uL
i

+mi − 1

⇒∀i,ML − (mi − 1) ≥ mi(U
L − uL

i)

(1−KH)mi − uL
i

(6)

While every ∆L
i may vary as ML varies, we note that

∀i,∆L
i ≤ mi − 1 holds by definition in any case. Therefore,

regardless the specific value of ML, we always have

(6) ⇒ ∀i,ML −∆i ≥
mi(U

L − ui)

(1−KH)mi − uL
i

by (4)⇒ ∀i, (1−KH)mi ≥
mi(U

L − uL
i)

ML −∆i
+ uL

i

⇒ ∀i, (1−KH) ≥ miU
L + (ML −∆L

i −mi)u
L
i

mi · (ML −∆L
i)

⇒ (1−KH) ≥ KL,

where the last step is by the definition of KL and directly
implies KL+KH ≤ 1. The theorem follows.

V. RELATED WORK

Since it was introduced by Vestal [34], MC tasks and their
scheduling have attracted a huge amount of interest in the
real-time systems research community. (Please see [12] for
a comprehensive survey on this topic.) Initially, most works
were directed to scenarios where all low-critical tasks are
completely dropped if any high-critical task behaves its worst
case. More recently, this over-sacrificing was criticized, and
gradual degradation of low-critical tasks was investigated. To
provide degraded service, the imprecise MC model [11] was
proposed, where the execution of low-critical tasks is reduced
but not dropped even in the worst case. Several subsequent
works [3, 11, 20, 22, 23, 27] explored various definitions
of this execution reduction. To eliminate such reduction, the
problem of precise MC scheduling was proposed and inves-
tigated on varying-speed uniprocessors [8, 35] and multipro-
cessors [33]. Such varying-speed processors are equipped with
a capacity of dynamic voltage and frequency scaling (DVFS)
for the purpose of energy efficiency [21]. However, DVFS is
not effective in reducing static/leakage power consumption.
Compared to DVFS, dynamic power management (DPM) and
deep sleep modes can lead to significant energy conserva-
tion resulted from the power-down of a number of system
components [5, 4]. [32] proposed precise MC scheduling of
sequential tasks on multiprocessors that a part of processors in
the system can be turned into sleep modes in typical scenarios
while fully exploited under worst-case scenarios.

Besides sequential tasks, the problem of scheduling real-
time parallel tasks has been investigated. Several works focus
on parallel task models that are related to the gang task model,
including periodic multi-thread task models [29, 31, 13], the
synchronous task model [1], and DAG task models [10, 25,
19, 7, 18]. In these models, Parallel threads of a task can
be independently considered and scheduled. By contrast, they
must simultaneously occupy a set of processors to execute
under the gang task model [17, 14, 24]. Goossens et al.
considered the rigid gang task model in [16], and Berten et
al. proposed the moldable gang scheduling in [6].

Upon MC scheduling, few works have been proposed for
parallel task models. Liu et al. [28] proposed the MC schedul-
ing of synchronous task model, while the MC scheduling for
DAG task models is investigated in [2] and [26]. Rambo et
al. [30] proposed a replica-aware co-scheduling approach for
mixed-critical systems. For the MC gang task scheduling, [9]
presented an approach combining Global Earliest Deadline
First (GEDF) and Earliest Deadline First with Virtual Deadline
(EDF-VD). Unlike these works, we consider precise MC
scheduling of the gang task model that provides full service
for low-critical gang tasks.

VI. CONCLUSION

In many conventional MC scheduling problems, LO-tasks
may be dropped or degraded when a mode switch to H-mode
is triggered. In this work, we investigated the precise MC
scheduling, where LO-tasks preserve their execution estimates
in H-mode. Upon a mode switch to H-mode, a certain number

of processors that are reserved in L-mode now become fully
available and dedicated to the real-time tasks. Our focus in
this paper was on rigid gang tasks, each of which may require
multiple processors to commence any execution. We presented
our scheduling algorithm EDF-VD for the problem of precise
scheduling MC gang tasks and provided a schedulability
test for EDF-VD as well as a proof for its correctness. In
addition, we also analyzed a safe lower bound on the number
of non-reserved processors in L-mode for guaranteeing the
schedulability of a given system. This, from the other hand,
implies how many processors can be safely reserved in L-mode
without jeopardizing the schedulability.

ACKNOWLEDGMENT

This work is supported in part by NSF grants CCF-2028481,
CNS-2104181, a start-up grant from the North Carolina State
University, and start-up and REP grants from Texas State
University.

REFERENCES

[1] Björn Andersson and Dionisio de Niz. Analyzing global-EDF for
multiprocessor scheduling of parallel tasks. In International Conference
On Principles Of Distributed Systems, pages 16–30. Springer, 2012.

[2] Sanjoy Baruah. The federated scheduling of systems of mixed-criticality
sporadic dag tasks. In 2016 IEEE Real-Time Systems Symposium (RTSS),
pages 227–236. IEEE, 2016.

[3] Sanjoy Baruah, Alan Burns, and Zhishan Guo. Scheduling mixed-
criticality systems to guarantee some service under all non-erroneous
behaviors. In 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS), pages 131–138. IEEE, 2016.

[4] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. A survey
of design techniques for system-level dynamic power management.
IEEE transactions on very large scale integration (VLSI) systems,
8(3):299–316, 2000.

[5] Luca Benini, Alessandro Bogliolo, Giuseppe A Paleologo, and Giovanni
De Micheli. Policy optimization for dynamic power management. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 18(6):813–833, 1999.

[6] Vandy Berten, Pierre Courbin, and Joël Goossens. Gang fixed priority
scheduling of periodic moldable real-time tasks. In 5th junior researcher
workshop on real-time computing, pages 9–12. Citeseer, 2011.

[7] Ashikahmed Bhuiyan, Zhishan Guo, Abusayeed Saifullah, Nan Guan,
and Haoyi Xiong. Energy-efficient real-time scheduling of DAG tasks.
ACM Transactions on Embedded Computing Systems, 17(5):84, 2018.

[8] Ashikahmed Bhuiyan, Sai Sruti, Zhishan Guo, and Kecheng Yang.
Precise scheduling of mixed-criticality tasks by varying processor speed.
In Proceedings of the 27th International Conference on Real-Time
Networks and Systems, pages 123–132, 2019.

[9] Ashikahmed Bhuiyan, Kecheng Yang, Samsil Arefin, Abusayeed Saiful-
lah, Nan Guan, and Zhishan Guo. Mixed-criticality multicore scheduling
of real-time gang task systems. In 2019 IEEE Real-Time Systems
Symposium (RTSS), pages 469–480. IEEE, 2019.

[10] Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, and
Andreas Wiese. Feasibility analysis in the sporadic DAG task model. In
2013 25th Euromicro conference on real-time systems, pages 225–233.
IEEE, 2013.

[11] Alan Burns and Sanjoy Baruah. Towards a more practical model for
mixed criticality systems. In 1st WMC, 2013.

[12] Alan Burns and Robert Davis. Mixed criticality systems-a review. Dept.
of Computer Science, University of York, Tech. Rep, pages 1–81, 2019.

[13] Pierre Courbin, Irina Lupu, and Joël Goossens. Scheduling of hard real-
time multi-phase multi-thread (mpmt) periodic tasks. Real-time systems,
49(2):239–266, 2013.

[14] Zheng Dong and Cong Liu. Analysis techniques for supporting hard
real-time sporadic gang task systems. Real-Time Systems, 55(3):641–
666, 2019.

[15] Zheng Dong, Kecheng Yang, Nathan Fisher, and Cong Liu. Tardiness
bounds for sporadic gang tasks under preemptive global edf scheduling.

IEEE Transactions on Parallel and Distributed Systems, 32(12):2867–
2879, 2021.

[16] Joël Goossens and Vandy Berten. Gang ftp scheduling of periodic and
parallel rigid real-time tasks. arXiv preprint arXiv:1006.2617, 2010.

[17] Joël Goossens and Pascal Richard. Optimal scheduling of periodic gang
tasks. Leibniz transactions on embedded systems, 3(1):04–1, 2016.

[18] Zhishan Guo, Ashikahmed Bhuiyan, Di Liu, Aamir Khan, Abusayeed
Saifullah, and Nan Guan. Energy-efficient real-time scheduling of
DAGs on clustered multi-core platforms. In 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 156–
168. IEEE, 2019.

[19] Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan,
and Haoyi Xiong. Energy-efficient multi-core scheduling for real-time
DAG tasks. In 29th Euromicro conference on real-time systems (ECRTS
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[20] Zhishan Guo, Kecheng Yang, Sudharsan Vaidhun, Samsil Arefin, Sajal K
Das, and Haoyi Xiong. Uniprocessor mixed-criticality scheduling with
graceful degradation by completion rate. In 2018 IEEE Real-Time
Systems Symposium (RTSS), pages 373–383. IEEE, 2018.

[21] Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar
Thiele. Energy efficient DVFS scheduling for mixed-criticality systems.
In Proceedings of the 14th International Conference on Embedded
Software, ACM, page 11. ACM, 2014.

[22] Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar
Thiele. Run and be safe: Mixed-criticality scheduling with temporary
processor speedup. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2015, pages 1329–1334. IEEE, 2015.

[23] Mathieu Jan, Lilia Zaourar, and Maurice Pitel. Maximizing the execution
rate of low criticality tasks in mixed criticality system. 1st WMC, 2013.

[24] Shinpei Kato and Yutaka Ishikawa. Gang EDF scheduling of parallel
task systems. In 2009 30th IEEE Real-Time Systems Symposium, pages
459–468. IEEE, 2009.

[25] Jing Li, Jian-Jia Chen, Kunal Agrawal, Chenyang Lu, Christopher D
Gill, and Abusayeed Saifullah. Analysis of federated and global
scheduling for parallel real-time tasks. In ECRTS, volume 14, pages
85–96, 2014.

[26] Jing Li, David Ferry, Shaurya Ahuja, Kunal Agrawal, Christopher Gill,
and Chenyang Lu. Mixed-criticality federated scheduling for parallel
real-time tasks. Real-time systems, 53(5):760–811, 2017.

[27] Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor
Stefanov, and Wang Yi. Edf-vd scheduling of mixed-criticality systems
with degraded quality guarantees. In 2016 IEEE Real-Time Systems
Symposium (RTSS), pages 35–46. IEEE, 2016.

[28] Guangdong Liu, Ying Lu, Shige Wang, and Zonghua Gu. Partitioned
multiprocessor scheduling of mixed-criticality parallel jobs. In 2014
IEEE 20th International Conference on Embedded and Real-Time Com-
puting Systems and Applications, pages 1–10. IEEE, 2014.

[29] Geoffrey Nelissen, Vandy Berten, Joël Goossens, and Dragomir Milo-
jevic. Techniques optimizing the number of processors to schedule
multi-threaded tasks. In 2012 24th Euromicro Conference on Real-Time
Systems, pages 321–330. IEEE, 2012.

[30] Eberle A Rambo and Rolf Ernst. Replica-aware co-scheduling for
mixed-criticality. In 29th Euromicro Conference on Real-Time Sys-
tems (ECRTS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[31] Abusayeed Saifullah, Jing Li, Kunal Agrawal, Chenyang Lu, and
Christopher Gill. Multi-core real-time scheduling for generalized parallel
task models. Real-Time Systems, 49(4):404–435, 2013.

[32] Tianning She, Zhishan Guo, Qijun Gu, and Kecheng Yang. Reserving
processors by precise scheduling of mixed-criticality tasks. In 2021
IEEE 27th International Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA), pages 103–108. IEEE, 2021.

[33] Tianning She, Sudharsan Vaidhun, Qijun Gu, Sajal K Das, Zhishan Guo,
and Kecheng Yang. Precise scheduling of mixed-criticality tasks on
varying-speed multiprocessors. In Proceedings of the 29th International
Conference on Real-Time Networks and Systems, 2021.

[34] Steve Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In 28th IEEE International
Real-Time Systems Symposium (RTSS), pages 239–243. IEEE, 2007.

[35] Kecheng Yang, Ashikahmed Bhuiyan, and Zhishan Guo. F2VD: Fluid
rates to virtual deadlines for precise mixed-criticality scheduling on a
varying-speed processor. In 2020 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pages 1–9. IEEE, 2020.

A High-Resilience Imprecise Computing
Architecture for Mixed-Criticality Systems

Zhe Jiang†§, Xiaotian Dai†∗, Alan Burns†, Neil Audsley¶, Zonghua Gu∥, Ian Gray†
†University of York, United Kingdom, §University of Cambridge, United Kingdom

¶City, University of London, United Kingdom, ∥Umeå University, Sweden

I. INTRODUCTION

Mixed-Criticality Systems (MCS) are systems in which
components can be developed under multiple assurance or
criticality levels and integrated on a shared hardware platform.
This is common in, for example, the automotive industry
in which an Advanced Driver Assistance System (ADAS)
may involve many modules developed under various criti-
cality levels. The collision avoidance module will be high-
criticality, whereas route-planning may be developed to a
lower criticality. In this domain, criticality levels are defined
as Automotive Safety and Integrity Levels (ASILs). Designing
a modern complex embedded system in domains such as this
is challenging because systems usually have to satisfy weight,
power and cost (SWaP-C) requirements [2], producing a trend
towards the integration of myriad software components and a
huge driver towards mixed-criticality systems.

The most accepted approach is the widely studied dual-
criticality MCS model (Vestal’s model [3]). In this model,
tasks are high-criticality and low-criticality (HI- and LO-tasks),
and have estimated Worst-Case Execution Times (WCET)s
with different confidence levels according to their criticality.
The high-critical WCET (HI-WCET) is obtained using strict
or formal methods, e.g., static timing analysis, resulting in
high confidence but often significant pessimism. On the other
hand, low-criticality WCET (LO-WCET) may be obtained with
measurement-based methods [3], which are more representa-
tive, but much less confident. To ensure timing correctness, it is
necessary that: (i) if all tasks finish executing within their LO-
WCETs, then they will all finish executing by their deadlines;
(ii) if any task does not complete execution within its LO-
WCET, then HI-tasks at least should complete execution by
their deadlines [3].

Conventional dual-mode MCSs therefore define two system
modes, LO-mode and HI-mode. In LO-mode (the optimistic
mode) the system assumes that the execution time of every
task (LO-task or HI-task) does not exceed its LO-WCET. If this
assumption is violated, the system switches into HI-mode, in
which it assumes the execution time of HI-tasks may exceed
their LO-WCETs, but will not exceed their HI-WCETs [2].
Imprecise MCS. The key difficulty associated with conven-
tional dual-mode MCS is the termination of the LO-tasks
affecting system functionality [2], especially if the system

*A full version of this paper was published in the IEEE Transactions on
Computers (TC) [1].

still relies on the computation results of LO-tasks even in
HI-mode. To extend the “life cycle” of the LO-tasks, a more
practical model is possible: without dropping LO-tasks directly
during mode switch, the system can continue to execute the
LO-tasks as much as possible but with degraded computation
precision, effectively accelerating LO-tasks’ execution. Such
a system model is called Imprecise MCS (IMCS) [4], [5].
In an IMCS, the imprecise computation tends to be used on
Floating Point (FP) computations because: (i) Modern LO-
tasks heavily rely on FP calculations, e.g., image process-
ing [6], signal processing [7], and Deep Neural Networks
(DNNs) [6]; (ii) FP calculations consume significantly more
clock cycles compared to other operations, which dominate
the tasks’ computation time [8].

This paper presents a new IMCS framework, HIART-MCS,
which, mitigates the computation errors caused by imprecise
computation for LO-tasks; achieves near-conventional MCS
real-time performance for HI-tasks; and supports dynamically
adjustable fine-grained levels of approximation of individual
tasks at run-time without the need for software adaptations.
Specifically, we present:

• A new FPU design, supporting approximation, accelerat-
ing all types of floating point computation.

• A novel system architecture that enables run-time config-
uration of software tasks’ approximation degrees.

• A practical measurement-based method for exploring all
potential configurations of the tasks in the system.

• A theoretical model, schedulability analysis, and opti-
misation approach, ensuring both the system’s real-time
performance and computation correctness.

• Comprehensive experiments examining the system under
different configurations using various metrics.

II. HIART -FPU OVERVIEW

As task execution is affected by components at different sys-
tem levels (language, compiler, OS, etc.), approximations can
be potentially deployed at any system level. In HIART-MCS,
we implement the approximation at the hardware level because
of three reasons: (i) hardware-level approximation ensures
source compatibility of software tasks, as the approximation is
transparent to the software; (ii) hardware-level approximation
occurs at run-time and so does not require input data to be
known prior; (iii) hardware-level approximation can provide
finer bit-width granularity, allowing run-time reconfiguration
of the degree of approximation for each task.

C-FPU

TCU

0x0

0x0

0x0

TC-hit

APU

OP1

OP2

OPR

OP1

OP2

OPR

RSL

RSL

RSL

OP1

OP2

OPR

CFG

Data Path Control Path

Fig. 1. Overview of HIART-FPU (CFG: configure interface).

Top-level micro-architecture. The design has two features:
• Run-time configurability: The FPU can be configured at

run-time to execute transparently with different approxi-
mation schemes. This is particularly important for IMCS.

• FP-cache: the FPU contains a dedicated FP-cache,
recording the recent calculation results of the mantissa
bits. During an FP-cache-hit, the FPU returns the man-
tissa bits’ calculation in a single clock cycle, accelerating
the FP computations. The benefits of this cache will be
explained in the following sections.

We designed the C-FPU using three parts (see Fig 1):
an Approximation Processing Unit (APU) that controls the
approximation degrees of the operands; a Cached-FPU (C-
FPU) and a Trivial Calculation Unit (TCU).
Computation Procedures. During an FP calculation, two
operands (filtered by the APU) and one operator are first trans-
mitted to the TCU. The TCU checks whether the calculation
matches a Trivial Cases (TCs): if TC hits, the TCU directly
returns the calculation results. Otherwise, the TCU generates a
TC-miss signal to the C-FPU, requesting the C-FPU to proceed
with the corresponding FP calculation.

III. SYSTEM ARCHITECTURE OF HIART-MCS

Unlike the conventional dual-mode MCS framework,
HIART-MCS uses three system modes:

• LO-mode: HIART-MCS initialises in LO-mode and stays
in this mode if none of the HI-tasks exceeds LO-WCETs.

• MID-mode: when a HI-task (τi) overruns its LO-WCET
(denoted as CLO

i), at the moment of over-execution, the
HIART-MCS immediately switches to MID-mode. In this
mode, LO-tasks can still be executed with approximation,
in which case their execution times (denoted as CAP

i)
should be less than CLO

i .
• HI-mode: if the HI-task continues to overrun and exceeds

a specific time point, HIART-MCS immediately switches
to HI-mode while all LO-tasks are terminated. The time
point triggering mode switch from MID-mode to HI-mode
is termed MID-WCET (denoted as CMI

i).
To enable these three system modes, we introduce archi-

tectural changes at both the hardware and the software levels.
At the hardware level, we deploy our novel processor that

Timer:MID
-Mode

Timer:HI-
Mode

Intr. Intr.

User Application User Application User Application

 OS Kernel

Application Level

OS Level

Lib.Mode_
Switch

Software
Hardware

HIART-
Processor

Execution Monitor

MemoryI/Os

User Application User Application User Application

 OS Kernel

Application Level

OS Level

Lib.Mode_
Switch

Software
Hardware Intr.

Processor

Execution Monitor

Timer: Hi-ModeMemoryI/Os

Mi

Fig. 2. System Architecture of HIART-MCS (The blue boxes show the new
parts in HIART-MCS).

supports FP imprecision (detailed previously in Sec. II) of
the LO-task in the MID-mode. Also, we deploy two hardware
timers to monitor the HI-tasks execution times for LO-WCETs
and MID-WCETs.

The software-level structure is comprised of kernel and
user spaces. In the kernel space, we present an implemen-
tation of both the Lib.mode switch and the execution mon-
itor. Specifically, we propose a new control function in the
Lib.mode switch, managing the approximation degree of LO-
tasks in MID-mode. For the execution monitor, we operate
the hardware timers during context switches corresponding
to the new mode switch strategy. In user space, we need no
changes to the original OS interfaces (see Fig. 2), thereby
ensuring source compatibility and allowing tasks designed for
a conventional MCS framework to be directly migrated.
Operation. At system initialisation, LO-tasks’ approximation
degree (Mi) and HI-tasks’ LO-WCETs and MID-WCETs are
loaded. During context switches, the execution monitor sus-
pends the timers of the currently executing task and then (re-
)activates the timers for the next executing task to monitor the
over-execution of LO-WCET and MID-WCET.

If a HI-task exceeds its LO/MID-WCET, the corresponding
timer generates an interrupt to trigger a mode switch (to
MID/HI-mode) by invoking Lib.mode switch. Also, the system
configures the approximation degree of LO-tasks at context
switch if the system stays in MID-mode. The pseudo-code of
the mode switch and context switch of HIART-MCS can be
found in [8].

IV. TIMING ANALYSIS AND OPTIMISATION

To give an analytical bound for HIART-MCS, we introduce
response time analysis (RTA) for a HIART-enabled platform
in order to test the schedulability of given a taskset with
constrained deadlines. With the introduction of the MID-mode,
the model and analysis have to be tailored to reflect the new
design. Specifically, the analysis for HIART uses a standard
dual-criticality analysis, with an additional criticality level,
and with the MID-mode execution times of LO-criticality
tasks being smaller than that of LO-mode. Based on the
schedulability analysis, the system’s overall utility can then
be optimised by applying either a fixed, or varying level of
computational imprecision. This is discussed in detail in [1].

V. EXPERIMENTAL EVALUATION

Platform setup. We built 4/8/16-core HIART-MCS variants
on a Xilinx VC709 evaluation board. HIART|nc denotes the
system without any FP-cache (which is the system frame-
work presented in [8]), whereas HIART|N-way (N ∈ {2, 8})
contains an N-way FP-cache with 256 entries. The FP-cache
address length is set to be 16, in which case only operands with
fewer than 8 valid mantissa bits (Mi < 16) will be buffered.
This is because when Mi < 16, the FP-cache hit rate
decreases dramatically, thus the improvement from a cache-
hit will be modest given the resources it would otherwise
cost. We implemented the HIART-processors based on the
SiFive Freedom E31, an open-source 32-bit RISC-V processor
(5-stage pipeline). We implemented the proposed FPU (see
Sec. II) in Verilog. The processors are connected to memory
and I/O peripherals using a 5 × 5 mesh open-source NoC [9].
The hardware was synthesised and implemented by Xilinx
Vivado (v2020.2). The software executing on the processors
(OS kernels, drivers and user applications) was compiled using
a RISC-V GNU toolchain. FreeRTOS (v.10.4) was the OS
kernel for all processors, with the minimal modifications that
were described in Sec. III.

Existing MCS frameworks usually implement run-time
monitoring and mode switches either in the OS kernel (OSK)
or a dedicated hypervisor (HYP). Therefore, we built two
baseline systems (BS) on similar hardware platforms using
conventional RISC-V processors. BS|OSK is a baseline MCS
framework implementing execution monitoring and mode
switches in OS kernels. BS|HYP is a baseline MCS framework
using virtualisation technology, including real-time patches
and I/O enhancement [10]. BS|HYP implements an execution
monitor and mode switches in its hypervisor.All systems ran
at 100 MHz because of the use of an FPGA as a prototyping.

A. Theoretical Evaluation

As one of the major design goals, the HIART should
increase survivability of LO-tasks. To evaluate this, we used
simulation based on synthetic tasksets using analytical evalua-
tion. We defined an evaluation metric, survivability (S), which
is the percentage of LO-tasks that survive during an overload:

S =
of survived cases

of all cases
× 100% (1)

The task utilisation was generated with UUniFast, and half
of the taskset was selected to be HI-tasks. In each trial,
one of the HI-tasks was randomly selected to overrun and
trigger a mode switch, with overrun execution time uniformly
distributed from CLO

i to CHI
i . Task priority was assigned by

deadline-monotonic priority ordering. We note that for the
traditional dual-criticality model (without AP-mode), the sur-
vivability was 0% as all LO-tasks are dropped. Each utilisation
consisted of 50 trials, and optimal Mi were selected.
Obs. 1. The proposed MCS model with the addition of the
AP-mode significantly improved LO-tasks’ survivability.

The observation can be seen in Fig. 3. The survivability
of LO-tasks was significantly improved when utilisation was

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

S
ur

vi
va

bi
lit

y

 = 0.1
 = 0.3
 = 0.5
 = 0.7

optimal

Fig. 3. Survivability of LO-tasks vs total utilisation

delrelatively low. For example, the survivability was around
100% when

∑
Ui ≤ 0.35 and was 60% when

∑
Ui = 0.6.

Survivability gradually decreased as utilisation increased, with
survivability of 20% even when

∑
Ui ≤ 0.8. Eventually,

survivability became close to 0, where nearly no system
can maintain its schedulability. In general, a higher γ could
prolong the AP-mode duration and thus improve survivability.

B. Real-time Performance and Computation Quality

As described in Sec. I, real-time performance and computa-
tion quality are the most important metrics for the IMCSs. In
this section, we use real-world use cases to evaluate the real-
time performance and computation quality of the systems.
Hardware and software deployment. We configured the
examined systems with 4/8/16 processors and deployed two
sets of software tasks:

• 18 HI-tasks, selected from Renesas functional safety
automotive use case database (e.g., CRC and RSA32).

• 18 LO-tasks, including 6 DNN tasks, 6 image processing
tasks, and 6 automotive function tasks selected from
EEMBC benchmark.

In the LO-task set, the DNN and image processing tasks
can be approximated at the MID-mode. The DNN tasks were
classified into two categories, established upon LeNet-5 [11]
and SqueezeNet (a variant of AlexNet) architectures. In each
category, three tasks were respectively trained using MNIST,
EMNIST and CIFAR-10 training datasets. The image process-
ing tasks were implemented to perform Sobel filter, Canny
filter, Scharr filter, Prewitt filter, Roberts filter and Sharpen
filter on Oxford-IIIT Pet Dataset [12], respectively.
Experimental setup. In the experiments, the raw data for
processing by the tasks was generated off-chip and sent to
the evaluated systems via two Ethernet controllers (1 Gbps)
at run-time. The experimental results were stored in the
dedicated addresses of DRAMs. For each experimental setup,
we executed the examined systems 200 times (500 seconds for
each run) under varying target utilisation from 45% to 100%,
with intervals of 5% increments.
Metrics. We examine the systems under each target utilisation
using two metrics: (i) real-time performance; (ii) computation
quality. For real-time performance, we used Success Ratio
(SR) to report the percentage of the trials executed without
any deadline miss of HI-tasks. For computation quality, we

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1

Su
cc

es
s

R
at

io
 (

%
)

BS|OSK
BS|HYP
HIART-MCS|nc
HIART-MCS|2-way
HIART-MCS|8-way

(a) 4-core systems.

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1

Su
cc

es
s

R
at

io
 (

%
)

BS|OSK
BS|HYP
HIART-MCS|nc
HIART-MCS|2-way
HIART-MCS|8-way

(b) 8-core systems.

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1

Su
cc

es
s

R
at

io
 (

%
)

BS|OSK
BS|HYP
HIART-MCS|nc
HIART-MCS|2-way
HIART-MCS|8-way

(c) 16-core systems.

Fig. 4. HI-tasks: success ratio (x-axis: utilisation).

0%

25%

50%

75%

100%

4-core 8-core 16-core

N
or

m
al

ise
d

Q
oC

 (%
) BS-OSK

BS-HYP

HIART-MCS|nc

HIART-MCS|2-way

HIART-MCS|8-way

97%
98%
99%

100%

Fig. 5. System: average QoC.

examined the systems using system-level QoC to record the
percentage of correct execution.
Obs. 2. IMCS decreased the HI-tasks’ success ratio compared
to the conventional MCS. This issue was effectively mitigated
by HIART|2-way and HIART|8-way.

This observation is given by Fig. 4. When the systems
were configured with the same settings (i.e., core number and
utilisation), HIART|nc suffered from a reduction of success
ratio compared to the conventional MCS (BS|OSK), as the
HIART|nc is designed upon BS|OSK but executes more tasks
in a specific time period (i.e., MID-mode). Unlike HIART|nc,
HIART|2-way and HIART|8-way achieved similar success
ratios as the BS|OSK. This is benefited by the deployment
of the FP-cache (Sec. II), accelerating the tasks’ executions at
MID-mode.
Obs. 3. Although using imprecise computation in IMCS
decreases system QoC, HIART|N-way could mitigate them.

As reported by Fig. 5, deploying imprecise computation
in HIART|nc decreased the system-level QoC. Although such
loss was caused by the nature of imprecise computing, in-
troduction of FP cache accelerates the computation, and such
brings the opportunity for finding more suitable parameters,
including deferring switching points and with better approxi-
mation degrees of each LO-tasks.

VI. CONCLUSION

Imprecise Mixed Criticality (IMCS) has been recently stud-
ied as a more practical model than conventional dual-mode
mixed criticality, because it could effectively improve the
survivability of low-criticality tasks. The IMCS model raises
three challenges to be solved. How to minimise the number
of system errors caused by computational imprecision, how to
minimise pessimism when compared with standard dual-mode
mixed criticality, and how to adapt existing legacy systems and

code to use the IMCS model. To solve these problems, we
present a new processor design which implements transparent
hardware-level computational approximation. The amount of
approximation is run-time configurable and can be adjusted
on a per-task basis to accelerate floating point computation.
The cost of this approach is additional hardware area and
power use. We propose a novel IMCS framework that takes
advantage of this hardware support with an expanded system
model, schedulability analysis, and optimisation approach that
ensures both the system’s real-time performance and min-
imises the impact of computational imprecision. As shown in
our evaluations, the proposed system significantly extends the
LO-tasks’ survivability whilst ensuring that HI-tasks’ real-time
performance remains near to that of a conventional MCS.

For more details regarding the paper, please see [1].

REFERENCES

[1] Z. Jiang, X. Dai, A. Burns, N. Audsley, Z. Gu, and I. Gray, “A
high-resilience imprecise computing architecture for mixed-criticality
systems,” IEEE Transactions on Computers, 2022.

[2] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department
of Computer Science, University of York, Tech. Rep, pp. 1–69, 2013.

[3] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in RTSS, 2007.

[4] L. Huang, I.-H. Hou, S. S. Sapatnekar, and J. Hu, “Graceful degradation
of low-criticality tasks in multiprocessor dual-criticality systems,” in
Proceedings of the 26th International Conference on Real-Time Net-
works and Systems, 2018, pp. 159–169.

[5] X. Gu and A. Easwaran, “Dynamic budget management and budget
reclamation for mixed-criticality systems,” Real-Time Systems, 2019.

[6] S. Bateni and C. Liu, “ApNet: Approximation-aware real-time neural
network,” in 2018 IEEE Real-Time Systems Symposium (RTSS). IEEE,
2018, pp. 67–79.

[7] M. Rosenthal, A. Weiss, and A. Mazloumian, “Realtime signal pro-
cessing on embedded GPUs,” in Embedded Computing Conference
(ECC2018), Winterthur, 5. Juni 2018, 2018.

[8] Z. Jiang, X. Dai, and N. Audsley, “Hiart-mcs: High resilience and
approximated computing architecture for imprecise mixed-criticality
systems,” in 2021 IEEE Real-Time Systems Symposium (RTSS). IEEE,
2021, pp. 290–303.

[9] G. Plumbridge, J. Whitham, and N. Audsley, “Blueshell: a platform
for rapid prototyping of multiprocessor nocs and accelerators,” ACM
SIGARCH Computer Architecture News, 2014.

[10] S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: Towards real-time
hypervisor scheduling in xen,” in 2011 Proceedings of the Ninth ACM
International Conference on Embedded Software. IEEE, 2011.

[11] Y. LeCun et al., “LeNet-5, convolutional neural networks,” URL:
http://yann. lecun. com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.

[12] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar, “Cats and
dogs,” in 2012 IEEE conference on computer vision and pattern recog-
nition. IEEE, 2012, pp. 3498–3505.

WaP: Computing the Execution Probability of Jobs
with Replication in Mixed-Criticality Schedules

Antonin Novak
Faculty of Electrical Engineering &

Czech Institute of Informatics, Robotics, and Cybernetics
Czech Technical University in Prague

Prague, Czech Republic
antonin.novak@cvut.cz

Zdenek Hanzalek
Czech Institute of Informatics, Robotics, and Cybernetics

Czech Technical University in Prague
Prague, Czech Republic

Premysl Sucha
Czech Institute of Informatics, Robotics, and Cybernetics

Czech Technical University in Prague
Prague, Czech Republic

Abstract—This extended abstract represents the journal paper
published in [13]. In that paper, we study the computation of the
execution probability of jobs with uncertain execution times in
a static mixed-criticality schedule. In contrast to the majority
of research in mixed-criticality systems that work with task
models where the jobs are gradually revealed to the scheduler, we
assume a time-triggered environment where the offline scheduler
generates a static schedule [14], [15], [17]. The execution time
of the mixed-criticality jobs is not known in advance and is
revealed during the online execution. An online execution policy
is designed to handle the prolongations of execution times and
escalations of the system mode. The policy may eventually reject
some of the low-criticality jobs under some execution scenarios,
thus affecting the execution probability of the jobs.

This paper deals with the complexity and the method for
analysis of the execution probability of mixed-criticality jobs in
a static schedule. To overcome the rigidity of static scheduling,
we introduce job replication, i.e., scheduling multiple time slots
for a single job, as a new mechanism for increasing the execution
probability of jobs. We show that the general problem with job
replication becomes as hard as the counting variant of 3-SAT
problem. To compute the execution probability, we propose an
algorithm utilizing the framework of Bayesian networks. The
proposed methodology demonstrates an interesting connection
between schedules with uncertain execution and probabilistic
graphical models.

Index Terms—execution analysis, mixed-criticality, time-
triggered, job replication, Bayesian networks, computational
complexity

I. INTRODUCTION

In contrast to the majority of research in mixed-criticality
systems [3], [4], [20], we assume a time-triggered environment
where the offline scheduler generates a static schedule [1],
[14], [15], [17], [18]. Nevertheless, the basic idea is somewhat
similar to classical Vestal’s model [20] with the key differences
described below. We assume that the execution time of the

This work was supported by the EU and the Ministry of Indus-
try and Trade of the Czech Republic under the Project OP PIK
CZ.01.1.02/0.0/0.0/20 321/0024399. Furthermore, this work was supported
by the Grant Agency of the Czech Technical University in Prague, grant No.
SGS22/167/OHK3/3T/13.

00 55 99 1111 1515 2525

etet

tt

T1T1

T2T2 T3T3

T4T4

T5T5

T6T6 T7T711

22

33

cr
it
ic
al
it
y
le
ve
l

cr
it
ic
al
it
y
le
ve
l

Fig. 1: Schedule with mixed-criticality jobs and an execution
scenario et.

mixed-criticality jobs is not known and follows a probability
distribution [13], [17]. The actual execution time is revealed
during the online execution of the schedule. To compensate for
the prolongations of execution times and the elevations of the
system mode observed during the runtime (e.g., in Figure 1
at time t = 5, system mode is raised to et = 2), we employ
an online policy to govern the execution of the schedule. The
policy may eventually reject some of the low-criticality jobs
under some execution scenarios, thus affecting their execution
probability.

In our mixed-criticality model [8], [13]–[15], we also use
the so-called match-up property, meaning that the system mode
can be lowered and returned to nominal operation mode once
it is escalated. This can be seen, e.g., in Figure 1, where after
execution of job T5, the execution scenario matches up with
the nominal system mode, i.e., et = 1 at t = 25. This is, in
fact, similar to the concepts used in Flexible Mixed-Criticality
Systems [6], [11]. In this extended abstract, we will focus
on a more intuitive explanation with an application example
rather than giving formal definitions first. A more detailed
description of the assumed mixed-criticality system model
for non-preemptive scheduling in time-triggered environments
can be found in the series of works [8], [13]–[15], [17].
For experimental evaluation of the model on a real hardware
testbed, please see [9].

Although the static scheduling increases the predictability of

tt

cr
it
ic
al
it
y
le
ve
l

cr
it
ic
al
it
y
le
ve
l

22

33

11

J1,1J1,1

J2,1J2,1 J3,1J3,1

J4,1J4,1

J3,2J3,2

J5,1J5,1

22 55

0.80.8

0.20.2

(a) Mixed-criticality schedule with replication with five jobs where J3 has two
replicas.

tt

J1,1J1,1 J4,1J4,1 J3,2J3,2 J5,1J5,1

(b) An execution scenario.

Fig. 2: Mixed-criticality schedule with three criticality levels with one of the possible execution scenarios.

the system (i.e., its behavior is given by a static schedule which
can be analyzed offline), the execution of critical jobs may
occasionally require to reject less critical jobs during online
execution (e.g., J2,1 and J3,1 in Figure 2b). Thus, careful
scheduling of jobs needs to be used to mitigate the degradation
of the execution probability of non-critical jobs without affect-
ing the requirements of critical jobs. To optimize the execution
probability of jobs in a schedule, a scheduling algorithm needs
to assess the quality (i.e., the objective function) of the current
schedule in order to drive the search toward a good solution.
Hence, the computation of the objective function of a schedule
is the central component of any algorithm that produces high-
quality schedules.

A. Contributions

In paper [13], we study job replication, which is a mecha-
nism for increasing the execution probability of jobs in time-
triggered mixed-criticality schedules. Specifically, the main
contributions are:

– We introduce the concept of replication to mixed-
criticality schedules as a mechanism for increasing the
execution probability of jobs.

– We show that the general problem of computing execu-
tion probability for a job in a mixed-criticality schedule
with replication as hard as counting the number of satis-
fiable assignments of a propositional formula in normal
conjunction form, in contrast to the known polynomial-
time algorithm for the case without replication.

– We solve the problem by a reduction to the probabilistic
inference in a suitably defined Bayesian network.

– We show that the cases of reasonable interests (i.e.,
constant-bounded number of criticality levels and the
maximum number of replicas per job) can be solved in
polynomial time in the number of jobs, which enables
practical usage of job replication.

II. STATIC MIXED-CRITICALITY SYSTEMS WITH JOB
REPLICATION

In this section, we describe an application example to
illustrate the main concepts of static mixed-criticality systems
with job replication. An extension of our mixed-criticality
model by a frequency dimension has been implemented and
tested in practice on a real-life testbed, e.g., for message
scheduling in 5G NR (new radio) networks [9].

A. Application example

Consider a message scheduling problem on a shared com-
munication bus in modern vehicles. Safety-related standards
such as ASIL (Automotive Safety Integrity Levels) [2] in-
troduce the existence of messages with several levels of
criticality, such as:

– messages of high criticality (criticality 3) are used for
safety-related functionalities (their failure may result in
death or severe injury to people), such as steering;

– messages of medium criticality (criticality 2) are used for
mission-related functionalities (their failure may prevent
activity from being successfully completed), such as
parking assist;

– messages of low criticality (criticality 1) are typically
used for infotainment functionalities, such as automotive
navigation system.

The messages are transmitted via the bus at the moments de-
fined by the static time-triggered schedule [10] (e.g., the static
segment of a FlexRay bus [7]), which improves determinism
and predictability. The goal is to compute an objective function
reflecting statistical properties of a given static schedule that
accounts for disruption of the communication according to the
message criticality. In real-life environments, the execution of
jobs is affected by various sources of uncertainty, causing, e.g.,
transmission delays. In the above example, criticality expresses

J1,1J1,1

J6,1J6,1

J2,1J2,1

J3,1J3,1

J4,1J4,1

J5,1J5,1

J2,2J2,2

J5,2J5,2 J3,2J3,2 J3,3J3,3

J7,1J7,1

tt

0.50.5

0.30.3

0.20.2

0.30.3

0.20.2

0.50.5

0.40.4

0.60.6

0.40.4

0.60.6

(a) Example schedule s.

J1,1J1,1

J2,1J2,1 J2,2J2,2

J3,1J3,1 J3,2J3,2 J3,3J3,3

J4,1J4,1

J5,2J5,2 J6,1J6,1J5,1J5,1

J7,1J7,1

(b) Corresponding Bayesian network G(s).

Fig. 3: Representation of a schedule by a Bayesian network.

TABLE I: Execution probabilities of individual replicas in schedule s.

J1,1 J2,1 J2,2 J3,1 J3,2 J3,3 J4,1 J5,1 J5,2 J6,1 J7,1

Pr {Ji,q ⪰ 1} 1.0 0.8 0.2 0.68 0.32 0.0 1.0 0.5 0.46 0.5 1.0

the commitment to the transmission when the original trans-
mission is prolonged. Therefore, several transmission attempts
are awarded to messages with a high criticality, whereas for
low-criticality messages, it might be just a single one.

Figure 2a shows an example of a mixed-criticality static
schedule with six job replicas. Each job has a given integer
criticality, as it is seen on the vertical axis. For example, job
J4,1 has a criticality of three, job J1,1 has a criticality of two,
while J2,1 has a criticality of one. Notice that J3,1 and J3,2
are two replicas of the same job; hence, they have the same
parameters but different start times. Job J1,1 has execution
time 2 time units with probability 0.8, and 5 time units with
probability 0.2. The considered values of execution times are
derived from the (empirical) cumulative distribution function
with respect to the selected probability thresholds [15], [20].

Mixed-criticality schedules contain several alternative ex-
ecution scenarios, with the one being selected based on the
realized execution times of jobs that occur during the runtime
execution. It is dispatched in such a way that in any of
these scenarios, all highly critical jobs are executed, rejecting
jobs with lower criticality only when a highly critical one
is prolonged. This leads to more efficient resource usage
since the low-criticality jobs may use the resource when the
critical ones are not prolonged. To compensate for unexpected
prolongations of critical jobs observed at the runtime, some of
the less critical ones might not be executed under the specific
realization of execution times. This can be seen in Figure 2b,
where jobs J2,1 and J3,1 are rejected if realized execution time
of J1,1 is equal to 5, happening with probability 0.2. However,
the second replica J3,2 was executed later on. Finally, we
note that, e.g., J1,1 is never rejected since it does not share
its execution time with any other job with higher criticality.

Therefore, the execution probability of J1,1, denoted as P1, is
1 while execution probability of J2,1 is P2 = 0.8.

In this paper, we deal with the problem of computing
execution probabilities Pi of jobs Ji with replication for the
given fixed schedule.

III. RESULTS

A. Time complexity of the problem

We show that the general problem where either the maxi-
mum number of criticality levels L or the maximum number
of replicas per job R is bounded by a polynomial in the
number of jobs and the other is equal to some chosen constant
remains #P-hard. We remind that #P is a class of counting
problems, i.e., a set of problems that count the number of
accepting paths in a polynomial-time non-deterministic Turing
machine [19]. An example of a problem contained in #P is
the following: What is the number of spanning trees in the
given connected simple graph? A problem is said to be #P-
hard, if for every problem in #P , there exists a polynomial-
time counting reduction to it [5].

First, we show that deciding whether a job has a non-
zero probability of being executed is as hard as determining
whether a CNF (conjunctive normal form) formula is satisfi-
able.

Proposition 1: There exists a finite number of maximum
replicas per job R such that deciding whether Pi > 0 for
some job Ji is NP-complete.

The reduction suggests that the problem remains hard even
for a constant number of the maximum job replicas, i.e.,
R = 4. Moreover, we will show that a non-constant number
of criticality levels is not the only source of hardness. Indeed,
the problem remains hard, assuming a constant number of

criticality levels when the maximum number of replicas is
not fixed to a constant.

Proposition 2: There exists a finite number of criticality
levels L such that determining whether Pi > 0 for some job
Ji is NP-complete.

To compute the exact execution probability of jobs in
a given schedule, we propose an algorithm based on the
theoretical framework of the Bayesian network.

B. Algorithm for computation of the execution probability

We show how the statistical properties of mixed-criticality
schedules with replication can be described with Bayesian
networks. A Bayesian network G = (V,A) is a probabilistic
directed acyclic graphical model representing the joint distri-
bution over the set V of random variables using conditional
dependencies defined by edges A. The network contains one
vertex for each job replica in the schedule. The directed
edges connect the vertices if the corresponding job replica
can affect the execution of the other (i.e., a conflicting higher-
criticality job or preceding replica). Since the execution time
of jobs is uncertain, we can view the job replicas as random
variables. Then, the execution policy defines a joint probability
distribution Pr {J1,1, . . . , Jn,ni} over the given schedule that
assigns a probability to each execution scenario.

To represent this distribution, we use Bayesian networks
(BN) [16], which can be seen as an efficient way of rep-
resenting joint distributions. An example of such a static
mixed-criticality schedule and its representation by a Bayesian
network can be seen in Figure 3. To compute the execution
probabilities of jobs, one can use algorithms, such as variable
elimination or junction trees, for the inference in Bayesian
networks. The outcome of this procedure is the execution
probability of each job, which can be seen in Table I. For
example, the result of the analysis in Table I reveals that replica
J3,3 cannot be executed, thus, can be removed in the design
phase. Please see [13] for more details.

IV. CONCLUSION

In this paper, we have introduced the job replication mech-
anism for the static time-triggered mixed-criticality model
to help to overcome the rigidity of static scheduling. Job
replication, i.e., scheduling a single job with multiple oc-
currences, increases the execution probability of jobs but
introduces additional computation complexity for the analysis
of the resulting static schedules. We have shown that the
complexity is affected by two natural parameters—the number
of criticality levels and the maximum number of replicas per
job. To practically solve the problem of the computation of
the execution probability, we have proposed a reduction to the
theoretical framework of Bayesian networks for which many
efficient algorithms exist.

For future research, we suggest looking into the integra-
tion of event-triggered and time-triggered paradigms using
techniques such as schedule graph abstraction [12]. One of
the possible applications might be to use static scheduling
for the most critical functionality, as it often consists of

core and essential components that do not change very often,
but its correctness needs to be formally verifiable. However,
static approaches lack the flexibility and efficiency of event-
triggered environments, which could be used for applications
with smaller criticality. Therefore, combining the two might
bring the best of both paradigms.

REFERENCES

[1] Lalatendu Behera and Purandar Bhaduri. Time-triggered scheduling for
multiprocessor mixed-criticality systems. In Distributed Computing and
Internet Technology, pages 135–151, Cham, 2018. Springer International
Publishing.

[2] Ron Bell. Introduction to IEC 61508. In Proceedings of the 10th
Australian workshop on Safety critical systems and software-Volume 55,
pages 3–12. Australian Computer Society, Inc., 2006.

[3] Alan Burns and Robert I. Davis. A survey of research into mixed
criticality systems. ACM Comput. Surv., 50(6):82:1–82:37, November
2017.

[4] Alan Burns, Robert I Davis, Sanjoy Baruah, and Iain Bate. Ro-
bust mixed-criticality systems. IEEE Transactions on Computers,
67(10):1478–1491, 2018.

[5] Nadia Creignou and Miki Hermann. On P completeness of some
counting problems. PhD thesis, INRIA, 1993.

[6] Xinyang Dong, Gang Chen, Mingsong Lv, Weiguang Pang, and Wang
Yi. Flexible mixed-criticality scheduling with dynamic slack manage-
ment. Journal of Circuits, Systems and Computers, 30(10):2150306,
2021.

[7] Jan Dvořák and Zdeněk Hanzálek. Using two independent channels with
gateway for flexray static segment scheduling. IEEE Transactions on
Industrial Informatics, 12(5):1887–1895, 2016.

[8] Zdenek Hanzalek, Tomas Tunys, and Premysl Sucha. An analysis of the
non-preemptive mixed-criticality match-up scheduling problem. Journal
of Scheduling, 19(5):601–607, Oct 2016.

[9] Xi Jin, Yu Tian, Chi Xu, Changqing Xia, Dong Li, and Peng Zeng.
Mixed-criticality industrial data scheduling on 5G NR. IEEE Internet
of Things Journal, 2021.

[10] H. Kopetz. Event-triggered versus time-triggered real-time systems,
pages 86–101. Springer Berlin Heidelberg, Berlin, Heidelberg, 1991.

[11] Jaewoo Lee and Jinkyu Lee. MC−FLEX: Flexible mixed-criticality
real-time scheduling by task-level mode switch. IEEE Transactions on
Computers, 71(8):1889–1902, 2022.

[12] Mitra Nasri and Bjorn B Brandenburg. An exact and sustainable
analysis of non-preemptive scheduling. In 2017 IEEE Real-Time Systems
Symposium (RTSS), pages 12–23. IEEE, 2017.

[13] Antonı́n Novák and Zdenek Hanzalek. Computing the execution prob-
ability of jobs with replication in mixed-criticality schedules. Annals of
Operations Research, 2022.

[14] Antonı́n Novák, Premysl Sucha, and Zdenek Hanzalek. Efficient algo-
rithm for jitter minimization in time-triggered periodic mixed-criticality
message scheduling problem. In Proceedings of the 24th International
Conference on Real-Time Networks and Systems, RTNS ’16, page 23–31,
New York, NY, USA, 2016. Association for Computing Machinery.

[15] Antonı́n Novák, Premysl Sucha, and Zdenek Hanzalek. Scheduling
with uncertain processing times in mixed-criticality systems. European
Journal of Operational Research, 279(3):687–703, 2019.

[16] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern
approach. Malaysia; Pearson Education Limited,, 2016.

[17] Yasmina Seddik and Zdenek Hanzalek. Match-up scheduling of mixed-
criticality jobs: Maximizing the probability of jobs execution. European
Journal of Operational Research, 262(1):46 – 59, 2017.

[18] Jens Theis, Gerhard Fohler, and Sanjoy Baruah. Schedule table gener-
ation for time-triggered mixed criticality systems. Proceedings of the
1st International Workshop on Mixed Criticality Systems, RTSS, pages
79–84, 2013.

[19] L.G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189 – 201, 1979.

[20] Steve Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Real-Time Systems
Symposium, 2007. RTSS 2007. 28th IEEE International, pages 239–243.
IEEE, 2007.

Bridging the Pragmatic Gaps for Mixed-Criticality
Systems in the Automotive Industry

Zhe Jiang∗‡, Shuai Zhao†, Ran Wei§, Richard Parterson‡, Nan Guan††, Yan Zhuang§, Neil Audsley¶,
∗University of Cambridge, United Kingdom, ‡ARM Ltd., United Kingdom,

†University of York, United Kingdom, ¶City, University of London, United Kingdom,
§Dalian University of Technology, China, ††City, University of Hong Kong, China

I. INTRODUCTION

There is an increasing trend for safety-critical systems to
be integrated onto a shared platform to achieve functions of
different criticalities 1 [2]. Such systems are often referred
to as Mixed-Criticality Systems (MCS)s [3]. With the ever-
increasing demand of system functionalities and the shift
of the semiconductor industry to more powerful (multi-core)
platforms, mixing functionalities of different criticality levels
in a common hosting platform is appealing - system costs
introduced by size, weight and power consumption could
potentially be significantly reduced in the mixed-criticality
setting [4]. For example, leading automated vehicle companies
are devoting themselves to integrating Electronic Control Unit
(ECU) clusters and In-Vehicle Information System (IVIS) in
a shared platform. In such system, the ECU clusters must be
developed with the highest criticality as they usually control
the mechanical components (e.g. engine control), whereas the
IVIS can be developed with relatively lower criticality as it
only provides the interactive functionalities (e.g. navigation).

In academia, extensive research efforts have been made
towards MCS [3]. However, in industries, limited development
guidance for MCS have been provided in industrial standards
(e.g. DO-178C for avionics, ISO 26262 for automotive and EN
50128 for railway). Consequently, no standard industrial sys-
tem architecture for MCS has been established [5]. This is due
to the fact that a pragmatic gap exists between theoretical MCS
models and industrial practice – researchers have not taken
industrial practice/requirements into sufficient consideration,
causing conceptual mismatches to emerge between theoretical
models and industrial architectures. This is observed by a
number of studies, in [6], multiple definitions on criticality
between the theoretical MCS models and industrial standards
are discussed; in [7], the applicability of graceful degrada-
tion from theoretical MCS models to the industrial context
is discussed. To the best of our knowledge, no systematic
development methodology for MCS in industrial scenarios has
been proposed.
Contributions. In [8], we proposed a new system architecture
to take the first practical step in an attempt to bridge the
gaps between theoretical MCS models and industrial practices.
The original contributions made in [8] include i) a systematic
approach to develop MCS in an industrial scenario, which
is proposed upon Adaptive Mixed-Criticality (AMC) MCS

*A full version of this paper was published in the IEEE IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD) [1].

1By criticality, we mean the required safety assurance level of system
components, such as the Automotive Safety Integrity Level (ASIL) from the
international automotive safety standard ISO 26262.

model [3] with considerations of industrial practice and re-
quirements; ii) a system architecture (P-MCS) and three design
methodologies for the proposed approach; iii) a theoretical
model and schedulability analysis for P-MCS, which guaran-
tees system predictability; and iv) comprehensive experiments
to examine P-MCS against conventional MCS frameworks in
different perspectives.

This paper makes the following additional contributions: i)
a comprehensive analysis of pragmatic gaps between MCS
theory in academia and industrial practice; ii) a systematic
approach to develop MCS in an industrial scenario, which
is proposed upon Adaptive Mixed-Criticality (AMC) MCS
model [3] with considerations of industrial practice and re-
quirements; iii) a theoretical model and schedulability analysis
for P-MCS, which guarantees system predictability; and iv)
comprehensive experiments to examine P-MCS against con-
ventional MCS frameworks in different perspectives.

II. THE ACADEMIC MODEL

The majority of the academic research effort on MCS
relies on the AMC model proposed by Vestal [3]. The AMC
model assumes that the system has several execution modes
(L ∈ {(Mode) A,B,C,D, ...}), and contains a finite set of
sporadic tasks. Each task τi is defined by its period (Ti),
relative deadline (Di), a priority Pi, a criticality level (li ∈
{A,B,C,D, ...}), and a set of Worst-Case Execution Time
(WCET) estimations ({Ci,A, Ci,B , ..., Ci,li}), in which these
estimations reflect the WCET of τi in the criticality level, up
to li. The model assumes that Ci,A ≤ Ci,B ≤ ...Ci,li . Specif-
ically, the measured WCET at the lowest system mode (i.e.
L = A) is set to Ci,A, whereas at each higher system mode, the
subsequent estimations (Ci,B , ..., Ci,li) are obtained by either
more pessimistic WCET analysis techniques, or by considering
safety margins imposed by certification authorities. The system
initialises from system mode A, and all tasks are scheduled to
execute. During execution, if any task τi exceeds its execution
budget (Ci,A), the system will switch to the next mode (i.e.
L = B). In the meantime, tasks with a criticality level lower
than B (li < B) are suspended.

In the first AMC work [3], only a single-core MCS with
two system modes (i.e. Low- and High-criticality modes) is
considered. The AMC model is further extended by various
works, e.g. extensions on multiple system modes and criticality
levels [9], re-activation of the dropped tasks [10], etc. (see [2]
for a comprehensive survey). Our proposed P-MCS architec-
ture is also built atop the AMC model, with assumptions that
the system does not switch modes backwards, and tasks do
not reactivate after being terminated/suspended.

III. THE INDUSTRIAL GAPS

Our work is motivated by two observations obtained from
analysing the pragmatic gap between the AMC model and
practice in the automotive industry.

A. The Breaking of the ASIL Allocation System
The core concept of the AMC model is system mode switch,

which guarantees the execution of tasks with higher criticality,
by suspending tasks with lower criticality [2], [3]. As sum-
marised by Burns and Davis [2], the majority of the research
links the system mode switch to ‘graceful degradation’ from
industrial standards, i.e. ‘a technique aimed at maintaining the
more important system functions available, despite failures, by
dropping the less important system functions’ (ISO 26262-
4:2018, Clause 7). Therefore, determining ‘more important
functions’ and suspending ‘less important functions’ is the key
of implement system mode switch correctly in an industrial
MCS architecture.

However, ISO 26262 provides a means to determine the
criticality of the requirement of a function, which considers
S (Severity), E (Exposure) and C (Controllability). According
to the philosophy of system mode switch of the AMC model,
tasks assigned with higher ASIL requirements must always
be allowed to execute (when tasks assigned with lower ASIL
cannot finish execution within the time given to them), even if
it means that tasks assigned with lower ASIL requirements will
be suspended. This means, for example, when the AMC model
executes at system mode C (L = C), which enables ASIL-C
and ASIL-D tasks to execute, it will suspend all ASIL-A and
ASIL-B tasks, regardless of their associated S, E and C classes.
This is problematic, consider an ASIL-B task τi (li = B) with
{S3, E3 and C2} and an ASIL-C task τj (lj = C) with {S2, E4
and C3}. When AMC determines that task τj needs to execute
and perform mode switch from mode B (L = B) to mode C
(L = C), task τi is suspended. However, what has not been
considered is that the Exposure of task τi is raised from E3
to E4 because its intended function will always fail (because
it is suspended by the mode switch). In addition, failure of
task τi causes more harm than τj for it has an S3 Severity
class. As previously discussed, ASILs are statically allocated,
this means that the safety requirement of τi cannot be raised at
run-time, even though the suspension of τi essentially raises its
safety requirement from ASIL-B (li = B) to ASIL-C (li = C).

Another problem caused by the system mode switch is the
suspension of tasks with ASIL allocated to their requirements
as a result of ASIL Decomposition. For example, provided
a safety requirement R1 with ASIL-D is decomposed into
R1.1 (ASIL-C) and R2.2 (ASIL-A), where τi (with li = C)
and τj (with lj = A) are tasks fulfilling these two safety
requirements. When the AMC model switches from Mode
A (L = A) to Mode B (L = B), task τj is suspended as
lj < L. Although τj is independent from τi (ISO 26262
enforces component independence when performing ASIL
Decomposition), the suspension of τj poses threats to the
fulfilment of safety requirement R1. Another more severe
problem is when R1 is decomposed into R1.1 (ASIL-B) and
R2.2 (ASIL-B), that both tasks fulfilling R1.1 and R1.2 will
be suspended when the AMC switches from Mode B (L = B)
to Mode C (L = C). The above observations give rise to the
first pragmatic gap of AMC:

Pragmatic Gap I. During the system mode switch, safety
analysis must be performed (either run-time or off-line) on the
executing tasks to determine ones that need to be preserved,
in order to avoid catastrophic consequences caused due to the
termination of these applications.

B. Isolation v.s. Freedom from Interference
In safety-related standards (including ISO 26262), isola-

tion/separation between different critical functions is presented
as the essential requirement for MCS. As regulated in ISO
26262, ‘If freedom from interference between elements im-
plementing safety requirements cannot be argued in the pre-
liminary architecture, then the architectural elements shall be
developed in accordance with the highest ASIL for those safety
requirements.’. This implies that without certain isolation,
all elements have to be treated with the highest criticality.
Although ASIL Decomposition can be applied, in practice,
ASIL Decomposition is rather abused without considering
isolation/separation [11].

Isolation must be sufficiently considered in these dimen-
sions: temporal isolation, spatial isolation and fault isolation.
In an industrial MCS architecture, different criticality levels
introduce diverse requirements in the design and verification,
which lead to different fault-tolerance capabilities among
different critical applications (i.e. faults have more possibility
occurring in a low-criticality application, compared to a high-
criticality application [5], [7]). Spatial and fault isolation
avoid fault propagation between applications with different
criticality levels. Whilst temporal isolation effectively avoids
the propagation of malfunctions, e.g. caused by consuming too
high processor execution time (performance isolation) [2], [7].
This leads to the second Pragmatic Gap:
Pragmatic Gap II. In the industrial MCS architecture, tem-
poral isolation, spatial isolation and fault isolation must be
guaranteed between the different critical elements.

Although application-level isolation between different criti-
cal components has already been introduced in existing MCS
frameworks, the required isolation must consider the entire
system architecture, including Operating System (OS), system
monitor, device drivers, and hardware platform. Detailed dis-
cussion regarding partitioning and isolation is provided in [1].

IV. PRACTICAL MIXED-CRITICALITY SYSTEM
ARCHITECTURE (P-MCS)

With sufficient consideration of the AMC model and indus-
trial requirements, we propose a generic industrial MCS archi-
tecture, termed P-MCS (Practical-Mixed-Criticality System) to
bridge the pragmatic gaps identified. The P-MCS inherits most
of its features from the AMC model (e.g. system mode switch)
with the additional consideration of industrial requirements.
The proposed architecture is suitable for generic and sightly
forward-looking MCS industrial scenarios, e.g. systems with
more than four criticality levels.

A. Run-time Safety Analysis
To determine the correct ‘important functions’ in system

mode switch (Pragmatic Gap I), a run-time two-level safety
analysis is proposed to examine each task at the current
system mode, and to determine the preserved task set and the
terminated task set for the system mode to be switched into.

Operat ing
System

Drivers

System
Monitor

APP (l = K)APP (l = K) APP (l = K + 1)APP (l = K + 1)

APP (l = K + 2)APP (l = K + 2)

OS level Application level

Operat ing
System

Drivers

System
Monitor

APP (l = K) APP (l = K + 1)

APP (l = K + 2)

OS level Application level

Safety-Critical MCU/SoC
Hardware Level
Software Level

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = A)

User Mode
Kernel Mode

System Monitor (I = max)

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = B)

User Mode
Kernel Mode

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = max)

User Mode
Kernel Mode

Software

Safety-Critical MCU/SoC (I = max)
Hardware

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = A)

User Mode
Kernel Mode

System Monitor (I = max)

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = B)

User Mode
Kernel Mode

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = max)

User Mode
Kernel Mode

Safety-Critical MCU/SoC (I = max)

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = A)

User Mode
Kernel Mode

System Monitor (I = max)

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = B)

User Mode
Kernel Mode

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = max)

User Mode
Kernel Mode

Safety-Critical MCU/SoC (I = max)

Virtualisation Driver Virtualisation Driver Virtualisation Driver
Software
Hardware

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = A)

User Mode
Kernel Mode

System Monitor (I = max)

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = B)

User Mode
Kernel Mode

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = max)

User Mode
Kernel Mode

Safety-Critical MCU/SoC (I = max)

Virtualisation Driver Virtualisation Driver Virtualisation Driver
Software
Hardware

System
Monitor

TrustZone Enabled Microcontroller/SoC

Monitor Mode

NW Timer

Secure World (l = B)

Real-Time OS

Idle
Task

R
T

_T
as

k0

R
T

_T
as

k1

R
T

_T
as

k2

R
T

_T
as

k3

Secure World (l = B)

Real-Time OS

Idle
Task

R
T

_T
as

k0

R
T

_T
as

k1

R
T

_T
as

k2

R
T

_T
as

k3

General-Purpose OS

Normal World (l = A)

TZAPI LIB

Ta
sk

0

Ta
sk

1

Ta
sk

2

Ta
sk

3

Ta
sk

n

General-Purpose OS

Normal World (l = A)

TZAPI LIB

Ta
sk

0

Ta
sk

1

Ta
sk

2

Ta
sk

3

Ta
sk

n

Context
Switch

Software

SW
Timer

Hardware

System
Monitor

TrustZone Enabled Microcontroller/SoC

Monitor Mode

NW Timer

Secure World (l = B)

Real-Time OS

Idle
Task

R
T

_T
as

k0

R
T

_T
as

k1

R
T

_T
as

k2

R
T

_T
as

k3

General-Purpose OS

Normal World (l = A)

TZAPI LIB

Ta
sk

0

Ta
sk

1

Ta
sk

2

Ta
sk

3

Ta
sk

n

Context
Switch

Software

SW
Timer

Hardware

(a) Software Virtualisation

Operat ing
System

Drivers

System
Monitor

APP (l = K)APP (l = K) APP (l = K + 1)APP (l = K + 1)

APP (l = K + 2)APP (l = K + 2)

OS level Application level

Operat ing
System

Drivers

System
Monitor

APP (l = K) APP (l = K + 1)

APP (l = K + 2)

OS level Application level

Safety-Critical MCU/SoC
Hardware Level
Software Level

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = A)

User Mode
Kernel Mode

System Monitor (I = max)

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = B)

User Mode
Kernel Mode

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = max)

User Mode
Kernel Mode

Software

Safety-Critical MCU/SoC (I = max)
Hardware

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = A)

User Mode
Kernel Mode

System Monitor (I = max)

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = B)

User Mode
Kernel Mode

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = max)

User Mode
Kernel Mode

Safety-Critical MCU/SoC (I = max)

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = A)

User Mode
Kernel Mode

System Monitor (I = max)

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = B)

User Mode
Kernel Mode

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = max)

User Mode
Kernel Mode

Safety-Critical MCU/SoC (I = max)

Virtualisation Driver Virtualisation Driver Virtualisation Driver
Software

Hardware

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = A)

User Mode
Kernel Mode

System Monitor (I = max)

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = B)

User Mode
Kernel Mode

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = max)

User Mode
Kernel Mode

Safety-Critical MCU/SoC (I = max)

Virtualisation Driver Virtualisation Driver Virtualisation Driver
Software

Hardware

System
Monitor

TrustZone Enabled Microcontroller/SoC

Monitor Mode

NW Timer

Secure World (l = B)

Real-Time OS

Idle
Task

R
T

_T
as

k0

R
T

_T
as

k1

R
T

_T
as

k2

R
T

_T
as

k3

Secure World (l = B)

Real-Time OS

Idle
Task

R
T

_T
as

k0

R
T

_T
as

k1

R
T

_T
as

k2

R
T

_T
as

k3

General-Purpose OS

Normal World (l = A)

TZAPI LIB

Ta
sk

0

Ta
sk

1

Ta
sk

2

Ta
sk

3

Ta
sk

n

General-Purpose OS

Normal World (l = A)

TZAPI LIB

Ta
sk

0

Ta
sk

1

Ta
sk

2

Ta
sk

3

Ta
sk

n

Context
Switch

Software

SW
Timer

Hardware

System
Monitor

TrustZone Enabled Microcontroller/SoC

Monitor Mode

NW Timer

Secure World (l = B)

Real-Time OS

Idle
Task

R
T

_T
as

k0

R
T

_T
as

k1

R
T

_T
as

k2

R
T

_T
as

k3

General-Purpose OS

Normal World (l = A)

TZAPI LIB

Ta
sk

0

Ta
sk

1

Ta
sk

2

Ta
sk

3

Ta
sk

n

Context
Switch

Software

SW
Timer

Hardware

(b) TrustZone-based Implementation

Operat ing
System

Drivers

System
Monitor

APP (l = K)APP (l = K) APP (l = K + 1)APP (l = K + 1)

APP (l = K + 2)APP (l = K + 2)

OS level Application level

Operat ing
System

Drivers

System
Monitor

APP (l = K) APP (l = K + 1)

APP (l = K + 2)

OS level Application level

Safety-Critical MCU/SoC
Hardware Level
Software Level

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = A)

User Mode
Kernel Mode

System Monitor (I = max)

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = B)

User Mode
Kernel Mode

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = max)

User Mode
Kernel Mode

Software

Safety-Critical MCU/SoC (I = max)
Hardware

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = A)

User Mode
Kernel Mode

System Monitor (I = max)

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = B)

User Mode
Kernel Mode

User ApplicationUser ApplicationUser Application
User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = max)

User Mode
Kernel Mode

Safety-Critical MCU/SoC (I = max)

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = A)

User Mode
Kernel Mode

System Monitor (I = max)

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = B)

User Mode
Kernel Mode

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = max)

User Mode
Kernel Mode

Safety-Critical MCU/SoC (I = max)

Virtualisation Driver Virtualisation Driver Virtualisation Driver
Software

Hardware

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = A)

User Mode
Kernel Mode

System Monitor (I = max)

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = B)

User Mode
Kernel Mode

User ApplicationUser ApplicationUser Application

OS Kernel

Guest VM (l = max)

User Mode
Kernel Mode

Safety-Critical MCU/SoC (I = max)

Virtualisation Driver Virtualisation Driver Virtualisation Driver
Software

Hardware

System
Monitor

TrustZone Enabled Microcontroller/SoC

Monitor Mode

NW Timer

Secure World (l = B)

Real-Time OS

Idle
Task

R
T

_T
as

k0

R
T

_T
as

k1

R
T

_T
as

k2

R
T

_T
as

k3

Secure World (l = B)

Real-Time OS

Idle
Task

R
T

_T
as

k0

R
T

_T
as

k1

R
T

_T
as

k2

R
T

_T
as

k3

General-Purpose OS

Normal World (l = A)

TZAPI LIB

Ta
sk

0

Ta
sk

1

Ta
sk

2

Ta
sk

3

Ta
sk

n

General-Purpose OS

Normal World (l = A)

TZAPI LIB

Ta
sk

0

Ta
sk

1

Ta
sk

2

Ta
sk

3

Ta
sk

n

Context
Switch

Software

SW
Timer

Hardware

System
Monitor

TrustZone Enabled Microcontroller/SoC

Monitor Mode

NW Timer

Secure World (l = B)

Real-Time OS

Idle
Task

R
T

_T
as

k0

R
T

_T
as

k1

R
T

_T
as

k2

R
T

_T
as

k3

General-Purpose OS

Normal World (l = A)

TZAPI LIB

Ta
sk

0

Ta
sk

1

Ta
sk

2

Ta
sk

3

Ta
sk

n

Context
Switch

Software

SW
Timer

Hardware

(c) Hardware Acceleration

Fig. 1. Implementation Examples of P-MCS (Two Criticality Levels Supported)

A preserved task in mode K indicates the task is allowed
to execute in mode K but with a lower criticality level. A
terminated task in mode K is a task that will be terminated
during the mode switch to K.
Level 1: Failure Modes and Effect Analysis (FMEA2).
At the first level, the impacts of terminating each task are
analysed. If the termination of the task causes an unacceptable
consequence in the next system mode, the task is preserved.
Otherwise, the task is added into the termination list for the
time being and is passed to the level 2 analysis.
Level 2: Dependency Analysis. At this level, the dependency
of the important tasks (output from level 1) is analysed. Any
task that can cause corruption of an important task due to its
termination, has to be kept in the next system mode.

B. Support for Isolation

Considering isolation (Pragmatic Gap II), applications with
different criticality levels are allocated in the independent exe-
cuting environment (including spatial, temporal and fault isola-
tion). The mapping from isolated application groups to oper-
ating systems is performed off-line by allocation algorithms
(e.g. Worst-Fit Decreasing). The corresponding scheduling
between the isolated environment is supported by the system
monitor (more privileged). Because the hardware platform and
low-level drivers can be simultaneously accessed by different
critical applications without ‘freedom from interference’, both
hardware platforms3 and shared low-level drivers are designed
and executed at the highest criticality level. Following the
same rationale, the system monitor is also executed at the
highest criticality level. Differently, with independent high-
level drivers or operating systems being provided to the
different critical applications (e.g. kernel separation), such
high-level drivers or OSs only need to inherit the highest
criticality from accessing applications. Notably, some low-
level drivers are not accessed by all components [4]. These
low-level drivers only need to inherit the highest criticality of
the accessed applications.

C. Implementing P-MCS

We introduce three possible ways to implement P-MCS.
1) Software Virtualisation (P |swv): Virtualisation technol-

ogy enables spatial, temporal, and fault isolation between
guest VMs [12]. In order to achieve isolated executing en-
vironment for applications with different criticality, P |swv
assigns different criticality levels to guest VMs and allocates

2The details of implementing FMEA can be found in any textbook of safety.
3Like the software, criticality levels must also be assigned to the hardware

components (out-of-scope of this paper, see [4]).

the applications correspondingly. During system mode switch,
if all tasks in a guest VM are suspended, the guest VM
can be terminated directly. P |swv is agnostic to the applied
virtualisation. In our implementation, we adopt Xen [13]. The
system architecture of P |swv is shown in Fig. 1(a).
System Monitor. In P |swv, system monitor is integrated into
the ready-built Virtual Machine Monitor (VMM), e.g. Xen
hypervisor [13], which is mainly responsible for: virtualisa-
tion (e.g. interposition), the run-time safety analysis, system
mode switch (including execution monitoring), and real-time
scheduling of the VMs.

2) Trusted-Execution Environment (P |tz): ARM TrustZone
is a hardware-assisted separation technology introduced in
Cortex-A processors since 2004 [14]. This technology is cen-
tred around the concept of separating the system execution into
two independent executing environments (i.e. secure world and
normal world). Such worlds are granted uneven privileges,
e.g. normal software is prevented from directly accessing
secure world resources. For isolation, critical and less-critical
applications are allocated to the secure and the normal world,
respectively. The system architecture is presented in Fig. 1(b).
The key limitation of this implementation is that only two
criticality levels can be supported on each processor.
System Monitor. In P |tz, the system monitor is implemented
in the additional privileged mode (i.e. monitor mode), and is
mainly responsible for: inter-domain context switches, run-
time safety analysis, and system mode switch (including
execution monitoring).

3) Hardware-assisted Virtualisation (P |hwv): In P-MCS,
the additional features introduced in the system monitor and
the isolation imposed between different critical domains lead
to extra overhead compared to the conventional theoretical
model. This overhead significantly undermines the system
performance and predictability. P |hwv proposes the same
design concept as P |swv, but implements the system monitor
based on an open-source hardware-designed VMM [15]. The
hardware-designed VMM effectively offloads the previously
introduced overhead and low-layer drivers from the software to
hardware, which simplifies the access paths between the VMs
and the underlying hardware. The methodology effectively
improves system performance and schedulability, compared to
previous implementations. The system architecture of P |hwv
is presented in Fig. 1(c). The key limitation of the implemen-
tation is the additional hardware overhead and modification of
OS kernels (to support hardware-designed hypervisor).
System Monitor. In P |hwv, the system monitor is integrated
into the hardware-designed VMM, which is mainly responsible
for: the majority of virtualisation, run-time safety analysis,

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sc
h

ed
u

la
b

le

System Utilisation

AMC

P|swv

P|tz

P|hwv

(a) low mode

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sc
h

ed
u

la
b

le

System Utilisation

AMC

P|swv

P|tz

P|hwv

(b) mode switch

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sc
h

ed
u

la
b

le

System Utilisation

AMC

P|swv

P|tz

P|hwv

(c) high mode

Fig. 2. System schedulability under each execution mode

system mode switch (including execution monitoring), and
real-time scheduling of the VMs.

V. RESPONSE TIME ANALYSIS

With the system architecture and run-time behaviours de-
scribed in Sec. IV, the response time analysis is developed
in this section to provide the timing bound for the P-MCS.
Different from the response time analysis for the traditional
dual-mode (high and low) AMC architecture [16], the analysis
proposed along with P-MCS is generic (applicable to systems
with two or more modes), with additions to reflect the unique
features of the proposed architecture (e.g. run-time safety
analysis and task preservation). We acknowledge that a tighter
response time bounding during a mode change is presented
in [16]. For details of the analysis, please see [1].

VI. EVALUATION

To compare the resulting schedulability of P-MCS with the
traditional AMC model, the typical uni-processor dual-mode
MCS system is used for evaluation. The utilisation of each
task is generated by the UUniFast-Discard algorithm, with
a total system utilisation bound given by 0.05 × |Γ|. Task
utilisation is computed for the low-mode. Periods are gen-
erated in a log-uniform distribution between [1ms, 1000ms],
with implicat deadlines. Priorities are given by the deadline-
monotonic policy. Among all generated tasks, half of the tasks
are randomly chosen to assign with the low criticality level,
with others set to high-criticality tasks. The system has 4
severity levels with Slow = 1 and Shigh = 3. For each task,
its severity is generated randomly in a uniform distribution
between [1, 4]. In addition, task dependency under P-MCS is
considered and is generated randomly, in which each high-
criticality task has 10% possibility to have a dependent low-
criticality task. 10,000 systems are performed for each test
configuration.
Results. Fig. 2 presents the percentage of schedulable systems
of the AMC model (tested by the analysis in [16]) and P-
MCS (tested by the analysis proposed in Sec. V) under each
system execution state with shared resources. The system
utilisation is incremented by 5%. With the system running
in the low mode (Fig. 2(a)), the AMC model outperforms
P |swv due to the additional facilitiesin the P-MCS. For
P |tz, the schedulability loss is reduced by implementing the
system monitor on hardware. Notably, P |hmv at the low mode
outperforms the AMC model even with the additional costs,
via the hardware acceleration. Similar observations are also
obtained during the mode switch (Fig. 2(b)). However, the
schedulability difference between P |hwv and AMC under the
mode switch becomes less significant due to the execution
of safety analysis and the potential increased interference

from the system monitor. At the high mode (Fig. 2(c)), the
schedulability of AMC and P |hmv becomes similar (with
AMC slightly better) for preserving additional low-criticality
tasks, where more tasks will be preserved under P-MCS with
the increase of utilisation.

VII. CONCLUSION

In this paper, we formalise and analyse the mismatches
between the MCS theoretical models and industrial standards
via the system architecture perspective. Then, we present a
generic industrial architecture (i.e. P-MCS) upon the con-
ventional AMC, with additional satisfaction on the industrial
safety requirements – i.e. run-time safety analysis and isolation
between different critical elements. Experimental results show
that the hardware-based implementation of P-MCS effectively
alleviates the additional cost for satisfying the industrial safety
requirements and outperforms the traditional AMC model.

For more details regarding the paper, please see [1].

REFERENCES

[1] Z. Jiang, S. Zhao, R. Wei, D. Yang, R. Paterson, N. Guan, Y. Zhuang,
and N. C. Audsley, “Bridging the pragmatic gaps for mixed-criticality
systems in the automotive industry,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 41, no. 4, pp.
1116–1129, 2021.

[2] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department
of Computer Science, University of York, Tech. Rep, 2013.

[3] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in RTSS, 2007.

[4] “26262 road vehicles-functional safety,” International Standard ISO,
2018.

[5] A. Esper, G. Nelissen, V. Nélis, and E. Tovar, “An industrial view on the
common academic understanding of mixed-criticality systems,” Real-
Time Systems, 2018.

[6] P. Graydon and I. Bate, “Safety assurance driven problem formulation
for mixed-criticality scheduling,” Proc. WMC, Real-Time Systems Sym-
posium, pp. 19–24, 2013.

[7] R. Ernst and M. Di Natale, “Mixed criticality systems—a history of
misconceptions?” IEEE Design & Test, 2016.

[8] Z. Jiang, S. Zhao, P. Dong, Y. Dawei, R. Wei, N. Guan, and N. Audsley,
“Re-thinking mixed-criticality architecture for automotive industry,” in
38th International Conference on Computer Design, 2020.

[9] N. Kim, S. Tang, N. Otterness, J. H. Anderson, F. D. Smith, and D. E.
Porter, “Supporting I/O and IPC via fine-grained OS isolation for mixed-
criticality RT tasks,” in RTNS, 2018.

[10] S. Baruah and A. Burns, “Implementing mixed criticality systems in
ada,” in International Conference on Reliable Software, 2011.

[11] D. D. Ward and S. E. Crozier, “The uses and abuses of asil decom-
position in iso 26262,” in 7th IET International Conference on System
Safety, incorporating the Cyber Security Conference, 2012.

[12] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2011.

[13] X. Website, “https://xenproject.org/,” 2020.
[14] S. Pinto and N. Santos, “Demystifying trustzone: A comprehensive

survey,” ACM Computing Surveys (CSUR), 2019.
[15] Z. Jiang, N. Audsley, and P. Dong, “Bluevisor: A scalable real-time

hardware hypervisor for many-core embedded systems,” in RTAS, 2018.
[16] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed

criticality systems,” in Real-Time Systems Symposium, 2011.

